• Title/Summary/Keyword: distributed watershed model

Search Result 197, Processing Time 0.032 seconds

A Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (II) - Application and Analysis - (격자기반 운동파 강우유출모형 KIMSTORM의 개선(II) - 적용 및 분석 -)

  • Jung, In Kyun;Shin, Hyung Jin;Park, Jin Hyeog;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.709-721
    • /
    • 2008
  • This paper is to test the applicability of ModKIMSTORM (Modified KIneMatic Wave STOrm Runoff Model) by applying it to Namgangdam watershed of $2,293km^2$. Model inputs (DEM, land use, soil related information) were prepared in 500 m spatial resolution. Using five typhoon events (Saomi in 2000, Rusa in 2002, Maemi in 2003, Megi in 2004 and Ewiniar in 2006) and two storm events (May of 2003 and July of 2004), the model was calibrated and verified by comparing the simulated streamflow with the observed one at the outlet of the watershed. The Pearson's coefficient of determination $R^2$, Nash and Sutcliffe model efficiency E, the deviation of runoff volumes $D_v$, relative error of the peak runoff rate $EQ_p$, and absolute error of the time to peak runoff $ET_p$ showed the average value of 0.984, 0.981, 3.63%, 0.003, and 0.48 hr for 4 storms calibration and 0.937, 0.895, 8.08%, 0.138, and 0.73 hr for 3 storms verification respectively. Among the model parameters, the stream Manning's roughness coefficient was the most sensitive for peak runoff and the initial soil moisture content was highly sensitive for runoff volume fitting. We could look into the behavior of hyrologic components from the spatial results during the storm periods and get some clue for the watershed management by storms.

Decision of GIS Optimum Grid on Applying Distributed Rainfall-Runoff Model with Radar Resolution (레이더 자료의 해상도를 고려한 분포형 강우-유출 모형의 GIS 자료 최적 격자의 결정)

  • Kim, Yon-Soo;Chang, Kwon-Hee;Kim, Byung-Sik;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.105-116
    • /
    • 2011
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Therefore, the exact relationship and the spatial variability analysis of hydrometeorological elements and characteristic factors is critical elements to reduce the uncertainty in rainfall -runoff model. In this study, radar rainfall grid resolution and grid resolution depending on the topographic factor in rainfall - runoff models were how to respond. In this study, semi-distribution of rainfall-runoff model using the model ModClark of Inje, Gangwon Naerin watershed was used as Gwangdeok RADAR data. The completed ModClark model was calibrated for use DEM of cell size of 30m, 150m, 250m, 350m was chosen for the application, and runoff simulated by the RADAR rainfall data of 500m, 1km, 2km, 5km, 10km from 14 to 17 on July, 2006. According to the resolution of each grid, in order to compare simulation results, the runoff hydrograph has been made and the runoff has also been simulated. As a result, it was highly runoff simulation if the cell size is DEM 30m~150m, RADAR rainfall 500m~2km for peak flow and runoff volume. In the statistical analysis results, if every DEM cell size are 500m and if RADAR rainfall cell size is 30m, relevance of model was higher. Result of sensitivity assessment, high index DEM give effect to result of distributed model. Recently, rainfall -runoff analysis is used lumped model to distributed model. So, this study is expected to make use of the efficiently decision criteria for configurated models.

Applicability of Sobaek Radar Rain for Flood Routing of Chungju Dam Watershed (충주댐 유역 홍수추적을 위한 소백산 레이더 강우자료의 적용성 검토)

  • Ahn, So-Ra;Park, Hye-Sun;Han, Myoung-Sun;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.129-143
    • /
    • 2014
  • The purpose of this study is to evaluate the availability of dual-polarization radar rain for flood routing in Chungju Dam watershed($6,625.8km^2$) using KIMSTORM (Grid-based KIneMatic wave STOrm Runoff Model). The Sobaek dual-polarization radar data for 1 heavy rain and 3 typhoon(Khanun, Bolaven, and Sanba) events in 2012 were obtained from Han River Flood Control Office. The spatio-temporal patterns between the two data were similar showing the ratio of radar rain to ground rain with 0.97. The KIMSTORM was set to $500{\times}500m$ resolution and a total of 45,738 cells(198 rows${\times}$231 columns) for the watershed. For radar rain and 41 ground rains, the model was independently calibrated using discharge data at 3 streamflow gauging stations(YW1, YC, and CJD) with coefficient of determination($R^2$), Nash and Sutcliffe Model Efficiency(ME), and Volume Conservation Index(VCI). The $R^2$, ME, and VCI 0.80, 0.62 and 1.08 for radar rain and 0.83, 0.68 and 1.10 for ground rain respectively.

Analysis of Water Quality on Distributed Watershed using Topographic Data (공간정보를 이용한 분포형 유역 수질 모의)

  • Ryu, Byong-Ro;Jung, Seung-Kwon;Jun, Kye-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.897-913
    • /
    • 2004
  • There has been continuous efforts to manage the water resources for the required water quality criterion at river channel in Korea. However, we could not obtain the partial improvement only for the point source pollutant such as, wastewater from urban and industrial site through the water quality management. Therefore, it is strongly needed that the Best Management Practice(BMP) throughout the river basin for water quality management including non-point source pollutant loads. This problem should be resolved by recognizing the non-point source pollutant loads from upstream river basin to the outlet depends on the land use and soil type characteristic of the river basin using the computer simulation by distributed parameter model based on the detailed investigation and the application of Geographic Information System(GIS). Used in this study, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS) model is a tool suitable for long term evaluation of the effects of BMPs and can be used for un gauged watershed simulation of runoff and sediment yield. Now applications of model are in progress. So we just describe the limited result. However If well have done modeling and have investigated of propriety of model, well achieve our final goal of this study.

A Development of Auto-Calibration for Initial Soil Condition in K-DRUM Model (K-DRUM 개선을 위한 초기토양함수 자동보정기법 개발)

  • Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.71-79
    • /
    • 2009
  • In this study, a distributed rainfall-runoff model, K-DRUM, based on physical kinematic wave was developed to simulate temporal and spatial distribution of flood discharge considering grid rainfall and grid based GIS hydrological parameters. The developed model can simulate temporal and spatial distribution of surface flow and sub-surface flow during flood period, and input parameters of ASCII format as pre-process can be extracted using ArcView. Output results of ASCII format as post-process can be created to express distribution of discharge in the watershed using GIS and express discharge as animation using TecPlot. an auto calibration method for initial soil moisture conditions that have an effect on discharge in the physics based K-DRUM was additionally developed. The baseflow for Namgang Dam Watershed was analysed to review the applicability of the developed auto calibration method. The accuracy of discharge analysis for application of the method was evaluated using RMSE and NRMSE. Problems in running time and inaccuracy setting using the existing trial and error method were solved by applying an auto calibration method in setting initial soil moisture conditions of K-DRUM.

  • PDF

REA를 고려한 Lineament density map의 작성 방안 연구

  • 김규범;조민조;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.97-99
    • /
    • 2003
  • Lineament density maps can be used for the quantitative evaluation of relationship between lineaments and groundwater occurrence. There are several kinds of lineament density maps including lineament length density, lineament cross-points density, and lineament counts density maps. This paper reports the usefulness of the representative elementary area (REA) concept for lineament analysis. This concept refers to the area size of the unit circle to calculate the lineament density factors distributed within the circle: length, counts and cross-points counts. The circle is a unit circle that calculates the sum of the lineament length, lineament counts and the number of cross-points within it. The REA is needed to obtain the best representative lineament density map prior to the analysis of relation between lineaments and groundwater well yield or other groundwater characteristics. A basic lineament map for the Yongsangang-Seomjingang watershed of Korea, drawn from aerial black-and-white photographs of 1/20, 000 scale was used for demonstrating the concept. From this study, the conclusions were as follows: (1) the REA concept can be efficiently applied to the lineament density analysis and mapping, (2) for whole Yongsangang-Seomjingang watershed which has 6, 502 lineaments with an average lineament length of 3.3 km, the lower limits of each REA used for drawing the three density maps were about 1.77 $\textrm{km}^2$ (r=750 m) for lineament length density, 7.07 $\textrm{km}^2$ (r=1, 500 m) for lineament counts density, and 4.91 $\textrm{km}^2$ (r=1, 250 m) for lineament cross-points density, respectively, (3) the lineament densities are inversely proportional to the size of REA, and the REA can be calculated with this inversely linear regression model, (4) if the average lineament density values for the whole study area are known, the most accurate density maps can be drawn using the REAs obtained from each linear regression model, and (5) but critical attention should be paid to draw lineament counts density and lineament cross-points density maps because.

  • PDF

Flood Runoff Analysis using a Distributed Rainfall Runoff Model (분포형 유출모형을 이용한 홍수유출해석)

  • Jo, Hong-Je;Jo, In-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.199-208
    • /
    • 1998
  • This study is on the application of TOPMDEL(Topographic based hydrologic model) Which is a distributed rainfall-runoff model to the flood runoff analysis. The test area was Wichun experimental catchment site which is mountainous mid-area (Dongok, 33.63$\textrm{km}^2$ and Goro, 109,725 $\textrm{km}^2$) and being operated by the Ministry of Construction and ransporation. A three-dimensional digital elevation model(DEM) map was constructed using a physiographic map(1/25,000) and GIS software, Arc/Info, was used to the analysis of geofraphic factors. The topographic index of Dongok and Goro subcatchment was similar. As a results of the analysis, the model was validated that the simulated peak flow of a flood runoff was fit to the observed data. For the analysis of the effects of grid size, Dongok subcatchment was divided into 100,120-,240 m grid and Goro subcatchment was divided into grid and 120,200,350 m grid. It was shown that the peak flow increased in proportion to the increases of the grid size, but peak times were constant regardless of the grid size in both of the watershed.

  • PDF

The Development of Fully Coupled SWAT-MODFLOW Model (I) Model Development (완전 연동형 SWAT-MODFLOW 결합모형 (I) 모형의 개발)

  • Kim, Nam-Won;Chung, Il-Moon;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.499-507
    • /
    • 2004
  • In this study, the fully coupled SWAT-MODFLOW model is developed by using the type of embedment MODFLOW in SWAT. Since SWAT model has semi distributed features, its groundwater component can't consider distributed parameters such as hydraulic conductivity, storage coefficient and spatially variable natures such as distribution of groundwater heads and pumping rate and so forth. The main purpose of this study is to overcome these limitations. This linkage is completed considering the interaction between stream network and aquifer to reflect boundary flow. To correspond HRU in SWAT to grid in MODFLOW, HRU-GRID conversion tool using DEM is newly suggested. As groundwater recharge of MODFLOW can be estimated accurately by SWAT model, the reliability of groundwater discharge and total runoff of watershed could be greatly enhanced.

The Parallelization Effectiveness Analysis of K-DRUM Model (분포형 강우유출모형(K-DRUM)의 병렬화 효과 분석)

  • Chung, Sung-Young;Park, Jin-Hyeog;Hur, Young-Teck;Jung, Kwan-Sue
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.21-30
    • /
    • 2010
  • In this paper, the parallel distributed rainfall runoff model(K-DRUM) using MPI(Message Passing Interface) technique was developed to solve the problem of calculation time as it is one of the demerits of the distributed model for performing physical and complicated numerical calculations for large scale watersheds. The K-DRUM model which is based on GIS can simulate temporal and spatial distribution of surface flow and sub-surface flow during flood period, and input parameters of ASCII format as pre-process can be extracted using ArcView. The comparison studies were performed with various domain divisions in Namgang Dam watershed in case of typoon 'Ewiniar' at 2006. The numerical simulation using the cluster system was performed to check a parallelization effectiveness increasing the domain divisions from 1 to 25. As a result, the computer memory size reduced and the calculation time was decreased with increase of divided domains. And also, the tool was suggested in order to decreasing the discharge error on each domain connections. The result shows that the calculation and communication times in each domain have to repeats three times at each time steps in order to minimization of discharge error.

Application of MPI Technique for Distributed Rainfall-Runoff Model (분포형 강우유출모형 병렬화 처리기법 적용)

  • Chung, Sung-Young;Park, Jin-Hyeog;Hur, Young-Teck;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.747-755
    • /
    • 2010
  • Distributed Models have relative weak points due to the amount of computer memory and calculation time required for calculating water flow using a numerical analysis based on kinematic wave theory when compared to the conceptual models used so far. Typically, the distributed models have been mainly applied to small basins. It was necessary to decrease the resolution of the grid to make it applicable for large scale watersheds, and because it would take up too much time to calculate using a higher resolution. That has been one of the more difficult factors in applying the model for actual work. In this paper, MPI (Message Passing Interface) technique was applied to solve the problem of calculation time as it is one of the demerits of the distributed model for performing physical and complicated numerical calculations for large scale watersheds. The comparison studies were performed a single domain and a divided small domain in Yongdam Dam watershed in case of typoon 'Ewiniar' at 2006. They were compared to analyze the application effects of parallelization technique. As a result, a maximum of 10 times the amount of calculation time was saved but keeping the level of quality for discharge by using parallelization code rather than a single processor.