• Title/Summary/Keyword: direct integral

Search Result 213, Processing Time 0.027 seconds

Numerical simulations of elliptic particle suspensions in sliding bi-periodic frames

  • Chung, Hee-Taeg;Kang, Shin-Hyun;Hwang, Wook-Ryol
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.171-180
    • /
    • 2005
  • We present numerical results for inertialess elliptic particle suspensions in a Newtonian fluid subject to simple shear flow, using the sliding bi-periodic frame concept of Hwang et al. (2004) such that a particulate system with a small number of particles could represent a suspension system containing a large number of particles. We report the motion and configurational change of elliptic particles in simple shear flow and discuss the inter-relationship with the bulk shear stress behaviors through several example problems of a single, two-interacting and ten particle problems in a sliding bi-periodic frame. The main objective is to check the feasibility of the direct simulation method for understanding the relationship between the microstructural evolution and the bulk material behaviors.

Design of Multivariable PID Controllers: A Comparative Study

  • Memon, Shabeena;Kalhoro, Arbab Nighat
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.212-218
    • /
    • 2021
  • The Proportional Integral Derivative (PID) controller is the most popular industrial controller and more than 90% process industries use this controller. During the past 50 years, numerous good tuning methods have been proposed for Single Input Single Output Systems. However, design of PI/PID controllers for multivariable processes is a challenge for the researchers. A comparative study of three PID controllers design methods has been carried-out. These methods include the DS (Direct Synthesis) method, IMC (Internal model Control) method and ETF (Effective Transfer Function) method. MIMO PID controllers are designed for a number of 2×2, 3×3 and 4×4 process models with multiple delays. The performance of the three methods has been evaluated through simulation studies in Matlab/Simulink environment. After extensive simulation studies, it is found that the Effective Transfer Function (ETF) Method produces better output responses among two methods. In this work, only decentralized methods of PID controllers have been studied and investigated.

Design of Multivariable PID Controllers: A Comparative Study

  • Memon, Shabeena;Kalhoro, Arbab Nighat
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.11-18
    • /
    • 2021
  • The Proportional Integral Derivative (PID) controller is the most popular industrial controller and more than 90% process industries use this controller. During the past 50 years, numerous good tuning methods have been proposed for Single Input Single Output Systems. However, design of PI/PID controllers for multivariable processes is a challenge for the researchers. A comparative study of three PID controllers design methods has been carried-out. These methods include the DS (Direct Synthesis) method, IMC (Internal model Control) method and ETF (Effective Transfer Function) method. MIMO PID controllers are designed for a number of 2×2, 3×3 and 4×4 process models with multiple delays. The performance of the three methods has been evaluated through simulation studies in Matlab/Simulink environment. After extensive simulation studies, it is found that the Effective Transfer Function (ETF) Method produces better output responses among two methods. In this work, only decentralized methods of PID controllers have been studied and investigated.

New Control Scheme for the Wind-Driven Doubly Fed Induction Generator under Normal and Abnormal Grid Voltage Conditions

  • Ebrahim, Osama S.;Jain, Praveen K.;Nishith, Goel
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.10-22
    • /
    • 2008
  • The wind-driven doubly fed induction generator (DFIG) is currently under pressure to be more grid-compatible. The main concern is the fault ride-through (FRT) requirement to keep the generator connected to the grid during faults. In response to this, the paper introduces a novel model and new control scheme for the DFIG. The model provides a means of direct stator power control and considers the stator transients. On the basis of the derived model, a robust linear quadratic (LQ) controller is synthesized. The control law has proportional and integral actions and takes account of one sample delay in the input owing to the microprocessor's execution time. Further, the influence of the grid voltage imperfection is mitigated using frequency shaped cost functional method. Compensation of the rotor current pulsations is proposed to improve the FRT capability as well as the generator performance under grid voltage unbalance. As a consequence, the control system can achieve i) fast direct power control without instability risk, ii) alleviation of the problems associated with the DFIG operation under unbalanced grid voltage, and iii) high probability of successful grid FRT. The effectiveness of the proposed solution is confirmed through simulation studies on 2MW DFIG.

Computation of Green's Tensor Integrals in Three-Dimensional Magnetotelluric Modeling Using Integral Equations (적분방정식을 사용한 3차원 MT 모델링에서의 텐서 그린 적분의 계산)

  • Kim, Hee Joon;Lee, Dong Sung
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.41-47
    • /
    • 1994
  • A fast Hankel transform (FHT) algorithm (Anderson, 1982) is applied to numerical evaluation of many Green's tensor integrals encountered in three-dimensional electromagnetic modeling using integral equations. Efficient computation of Hankel transforms is obtained by a combination of related and lagged convolutions which are available in the FHT. We express Green's tensor integrals for a layered half-space, and rewrite those to a form of related functions so that the FHT can be applied in an efficient manner. By use of the FHT, a complete or full matrix of the related Hankel transform can be rapidly and accurately calculated for about the same computation time as would be required for a single direct convolution. Computing time for a five-layer half-space shows that the FHT is about 117 and 4 times faster than conventional direct and multiple lagged convolution methods, respectively.

  • PDF

Improved Recognition of Far Objects by using DPM method in Curving-Effective Integral Imaging (커브형 집적영상에서 부분적으로 가려진 먼 거리 물체 인식 향상을 위한 DPM 방법)

  • Chung, Han-Gu;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.128-134
    • /
    • 2012
  • In this paper, we propose a novel approach to enhance the recognition performance of a far and partially occluded three-dimensional (3-D) target in computational curving-effective integral imaging (CEII) by using the direct pixel-mapping (DPM) method. With this scheme, the elemental image array (EIA) originally picked up from a far and partially occluded 3-D target can be converted into a new EIA just like the one virtually picked up from a target located close to the lenslet array. Due to this characteristic of DPM, resolution and quality of the reconstructed target image can be highly enhanced, which results in a significant improvement of recognition performance of a far 3-D object. Experimental results reveal that image quality of the reconstructed target image and object recognition performance of the proposed system have been improved by 1.75 dB and 4.56% on the average in PSNR (peak-to-peak signal-to-noise ratio) and NCC (normalized correlation coefficient), respectively, compared to the conventional system.

A study on the development of 50W AC direct type engine with integrated reflector starting (리플렉터 일체형 50W급 AC 직결형 엔진개발에 관한 연구)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.388-393
    • /
    • 2018
  • In this paper, We developed a high efficiency reflector integrated type 50W AC direct connection type engine to realize miniaturization and weight reduction of product without using SMPS and to design a multistage varistor circuit Reduced costs by reducing the number of parts High reliability is achieved by using a circuit structure that does not use an electrolytic capacitor, thus increasing the lifetime of the LED. In addition, it is possible to manufacture an AC direct-coupled type driving device by using an IC semiconductor and apply an AC direct-coupled type driving device integrated with a reflector so that the lifetime of the device can be fully utilized for the lifetime of the LED, A light source having a plurality of light emitting diode channels including a plurality of light emitting diode channels arranged in series is driven with a rectified voltage.

Theory of Acoustic Propagation in 3 Dimensional Wedge Domain (3차원 쐐기형 영역에서의 음향파 전달 이론)

  • Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.83-91
    • /
    • 1994
  • Three components contribute to the acoustic field propagating in a wedge or over a ridge : a direct path arrival, an image component due to reflection from the boundaries and a component diffracted by the apex. All three contributions are included in a new, exact solution of the Helmholtz equation for the three-dimensional time harmonic field from a point source in a wedge(or over a ridge) formed by two intersecting, pressure-release plane boundaries. The solution is obtained by applying three integral transforms, and consists of and infinite sum of uncoupled normal nodes. The mode coefficients are given by a finite integral involving a Gegenbauer polynomial in the integrand, which may be computed relatively efficiently. Results of the theory for propagation over a 90 degree ridge is discussed.

  • PDF

Analysis of Spectral Reflectance Characteristics for Sand and Silt Turbid Water (모래와 실트의 탁수에 대한 분광특성 분석)

  • Shin, Hyoung-Sub;Lee, Kyu-Ho;Park, Jong-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.37-43
    • /
    • 2009
  • The objective of this study was to investigate the basic relationships between spectral reflectance and varying concentrations of sediment in surface waters. An experimental method for determining suspended sediment concentration (SSC) in the water by use of a spectroradiometer above the water surface, in visible and near-infrared (NIR) wavelengths, is applied. The main advantage of the method is the direct comparison of spectral reflectance and the SSC, but it requires an accurate knowledge of the water body and sediment. Therefore numerous spectroradiometric measurements are carried out in situ measurements, for SSC, ranging from zero to 100 percentage and two types of sediment applied in the water tank. The results indicate that the suspended sediment causes increasing spectral reflectance response in waters. We observed that spectral reflectance increases with SSC, first at the lower wavelengths (430-480 nm), then in the middle wavelengths (570-700 nm), and finally, in the NIR domain (800-820 nm); a characteristic maximum reflectance appears at 400-670 nm. Relationships between the wavelength, integral value, and the SSC were evaluated on the basis of the regression analysis. The regression curve for the relation between the wavelength, integral value, and the SSC were determined ($R^2$>0.98). Finally, the specular wavelength can be estimated to recognize the sediment and to improve SC estimation accuracy in the water.

Sizing Design Sensitivity Analysis and Optimization of Radiated Noise from a Thin-body (박판 구조물의 방사 소음에 대한 크기설계 민감도 해석 및 최적 설계)

  • 이제원;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1038-1043
    • /
    • 2003
  • There are many industrial applications including thin-body structures such as fins. For the numerical modeling of radiation of sound from thin bodies, the conventional boundary element method (BEM) using the Helmholtz integral equation fails to yield a reliable solution. Therefore, many researchers have tried to solve the thin-body acoustic problems. In the area of the design sensitivity analysis (DSA) and optimization methods, however, there has been just a few study reported. Especially fur the thin-body acoustics, however, no further study in the DSA and optimization fields has been reported. In this research, the normal derivative integral equation is adopted as an analysis formulation in the thin-body acoustics, and then used for the sizing DSA and optimization. Since the gradient-based method is used for the optimization, it is important to have accurate gradients (design sensitivities) of the objective function and constraints with respect to the design variables. The DSA formulations are derived through chain-ruled derivatives using the finite element method (FEM) and BEM by using the direct differentiation and continuum variation concepts. The proposed approaches are implemented and validated using a numerical example.

  • PDF