• Title/Summary/Keyword: differential equations with perturbation

Search Result 62, Processing Time 0.028 seconds

OSCILLATORY PROPERTY OF SOLUTIONS FOR A CLASS OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH PERTURBATION

  • Zhang, Quanxin;Qiu, Fang;Gao, Li
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.883-892
    • /
    • 2010
  • This paper is concerned with oscillation property of solutions of a class of second order nonlinear differential equations with perturbation. Four new theorems of oscillation property are established. These results develop and generalize the known results. Among these theorems, two theorems in the front develop the results by Yan J(Proc Amer Math Soc, 1986, 98: 276-282), and the last two theorems in this paper are completely new for the second order linear differential equations.

ANALYTICAL SOLUTION OF SINGULAR FOURTH ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS OF VARIABLE COEFFICIENTS BY USING HOMOTOPY PERTURBATION TRANSFORM METHOD

  • Gupta, V.G.;Gupta, Sumit
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.165-177
    • /
    • 2013
  • In this paper, we apply Homotopy perturbation transform method (HPTM) for solving singular fourth order parabolic partial differential equations with variable coefficients. This method is the combination of the Laplace transform method and Homotopy perturbation method. The nonlinear terms can be easily handled by the use of He's polynomials. The aim of using the Laplace transform is to overcome the deficiency that is mainly caused by unsatisfied conditions in other semi-analytical methods such as Homotopy perturbation method (HPM), Variational iteration method (VIM) and Adomain Decomposition method (ADM). The proposed scheme finds the solutions without any discretization or restrictive assumptions and avoids the round-off errors. The comparison shows a precise agreement between the results and introduces this method as an applicable one which it needs fewer computations and is much easier and more convenient than others, so it can be widely used in engineering too.

Approximate solution of fuzzy quadratic Riccati differential equations

  • Tapaswini, Smita;Chakraverty, S.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.255-269
    • /
    • 2013
  • This paper targets to investigate the solution of fuzzy quadratic Riccati differential equations with various types of fuzzy environment using Homotopy Perturbation Method (HPM). Fuzzy convex normalized sets are used for the fuzzy parameter and variables. Obtained results are depicted in term of plots to show the efficiency of the proposed method.

BOUNDEDNESS FOR PERTURBED DIFFERENTIAL EQUATIONS VIA LYAPUNOV EXPONENTS

  • Choi, Sung Kyu;Kim, Jiheun;Koo, Namjip;Ryu, Chunmi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.589-597
    • /
    • 2012
  • In this paper we investigate the stability of solutions of the perturbed differential equations with the positive order of the perturbation by using the notion of the Lyapunov exponent of unperturbed equations and an integral inequality of Bihari type.

ANALYTICAL TECHNIQUES FOR SYSTEM OF TIME FRACTIONAL NONLINEAR DIFFERENTIAL EQUATIONS

  • Choi, Junesang;Kumar, Devendra;Singh, Jagdev;Swroop, Ram
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1209-1229
    • /
    • 2017
  • We coupled the so-called Sumudu transform with the homotopy perturbation method (HPM) and the homotopy analysis method (HAM), which are called homotopy perturbation Sumudu transform method (HPSTM) and homotopy analysis Sumudu transform method (HASTM), respectively. Then we show how HPSTM and HASTM are more convenient than HPM and HAM by conducting a comparative analytical study for a system of time fractional nonlinear differential equations. A Maple package is also used to enhance the clarity of the involved numerical simulations.

A NUMERICAL METHOD FOR SINGULARLY PERTURBED SYSTEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION DIFFUSION TYPE WITH A DISCONTINUOUS SOURCE TERM

  • Tamilselvan, A.;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1279-1292
    • /
    • 2009
  • In this paper, a numerical method that uses standard finite difference scheme defined on Shishkin mesh for a weakly coupled system of two singularly perturbed convection-diffusion second order ordinary differential equations with a discontinuous source term is presented. An error estimate is derived to show that the method is uniformly convergent with respect to the singular perturbation parameter. Numerical results are presented to illustrate the theoretical results.

  • PDF

SOLVING HIGHER-ORDER INTEGRO-DIFFERENTIAL EQUATIONS USING HE'S POLYNOMIALS

  • Mohyud-Din, Syed Tauseef;Noor, Muhammad Aslam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.2
    • /
    • pp.109-121
    • /
    • 2009
  • In this paper, we use He's polynomials for solving higher order integro differential equations (IDES) by converting them to an equivalent system of integral equations. The He's polynomials which are easier to calculate and are compatible to Adomian's polynomials are found by using homotopy perturbation method. The analytical results of the equations have been obtained in terms of convergent series with easily computable components. Several examples are given to verify the reliability and efficiency of the proposed method.

  • PDF

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials

  • Ghannad, M.;Nejad, M. Zamani;Rahimi, G.H.;Sabouri, H.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.105-126
    • /
    • 2012
  • Based on the first-order shear deformation theory (FSDT), and the virtual work principle, an elastic analysis for axisymmetric clamped-clamped Pressurized thick truncated conical shells made of functionally graded materials have been performed. The governing equations are a system of nonhomogeneous ordinary differential equations with variable coefficients. Using the matched asymptotic method (MAM) of the perturbation theory, these equations could be converted into a system of algebraic equations with variable coefficients and two systems of differential equations with constant coefficients. For different FGM conical angles, displacements and stresses along the radius and length have been calculated and plotted.

NEW ANALYTIC APPROXIMATE SOLUTIONS TO THE GENERALIZED REGULARIZED LONG WAVE EQUATIONS

  • Bildik, Necdet;Deniz, Sinan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.749-762
    • /
    • 2018
  • In this paper, the new optimal perturbation iteration method has been applied to solve the generalized regularized long wave equation. Comparing the new analytic approximate solutions with the known exact solutions reveals that the proposed technique is extremely accurate and effective in solving nonlinear wave equations. We also show that,unlike many other methods in literature, this method converges rapidly to exact solutions at lower order of approximations.