SOLVING HIGHER-ORDER INTEGRO-DIFFERENTIAL EQUATIONS USING HE'S POLYNOMIALS

  • Received : 2008.12.01
  • Accepted : 2009.05.15
  • Published : 2009.06.25

Abstract

In this paper, we use He's polynomials for solving higher order integro differential equations (IDES) by converting them to an equivalent system of integral equations. The He's polynomials which are easier to calculate and are compatible to Adomian's polynomials are found by using homotopy perturbation method. The analytical results of the equations have been obtained in terms of convergent series with easily computable components. Several examples are given to verify the reliability and efficiency of the proposed method.

References

  1. R. P. Agarwal, Boundary value problems for higher order differential equations, world scientific, Singapore, 1986.
  2. R. P. Agarwal, Boundary value problems for higher order integro-differential equations Nonlinear Analysis, Theory, Math. Appl. 7(3) (1983), 259-270. https://doi.org/10.1016/0362-546X(83)90070-6
  3. A. Ghorbani and J. S. Nadjfi, He's homotopy perturbation method for calculating Adomian's polynomials, Int. J. Nonlin. Scne. Num. Simul. 8(2) (2007), 229-332.
  4. A. Ghorbani, Beyond Adomian's polynomials: He polynomials, Chaos Soliton & Fractals. (2007), in press.
  5. I. Hashim, Adomian's decomposition method for solving boundary value problems for fourth-order integro-differential equations, J. Comput. Appl. Math. 193 (2006), 658-664. https://doi.org/10.1016/j.cam.2005.05.034
  6. J. H. He, Some asymptotic methods for strongly nonlinear equation, Int. J. Mod. Phys. 20(20)10 (2006), 1144-1199.
  7. J. H. He, Homotopy perturbation technique, Comput. Math. Appl. Mech, Energy (1999), 178-257.
  8. J. H. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A 350 (2006), 87-88. https://doi.org/10.1016/j.physleta.2005.10.005
  9. J. H. He, Comparison of homotopy perturbation method and homotopy analysis method, Appl. Math. Comput. 156 (2004), 527-539. https://doi.org/10.1016/j.amc.2003.08.008
  10. J. H. He, Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. Nonlin. Sci. Num. Simul. 6(2) (2005), 207-208.
  11. J. H. He, The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. Math. Comput. 151 (2004), 287-292. https://doi.org/10.1016/S0096-3003(03)00341-2
  12. J. H. He, A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Nonlinear Mech. 35 (1) (2000), 115-123.
  13. J. Morchalo, On two point boundary value problem for integro-differential equation of second order, Fasc, Math, 9 (1975), 51-56.
  14. J. Morchalo, On two point boundary value problem of Integro differential equation of higher order, Fasc. Math. 9 (1975), 77-96.
  15. S. T. Mohyud-Din and M. A. Noor, Homotopy perturbation method for solving fourth-order boundary value problems, Math. Prob. Engg. (2007), 1-15, Article ID 98602, doi:10.1155/2007/98602.
  16. M. A. Noor and S. T. Mohyud-Din, An efficient algorithm for solving fifth order boundary value problems, Math. Comput. Modl. 45 (2007), 954-964. https://doi.org/10.1016/j.mcm.2006.09.004
  17. M. A. Noor and S. T. Mohyud-Din, Homotopy perturbation method for solving sixth-order boundary value problems, Comput. Math. Appl. 55 (12) (2008), 2953-2972. https://doi.org/10.1016/j.camwa.2007.11.026
  18. M. A. Noor and S. T. Mohyud-Din, Homotopy perturbation method for nonlinear higher-order boundary value problems, Int. J. Nonlin. Sci. Num. Simul. 9(4) (2008), 395-408.
  19. M. A. Noor and S. T. Mohyud-Din, Variational iteration method for solving higher-order nonlinear boundary value problems using He's polynomials, Int. J. Nonlin. Sci. Num. Simul. 9 (2) (2008), 141-157.
  20. M. A. Noor and S. T. Mohyud-Din, Variational iteration method for solving fifth-order boundary value problems using He's polynomials, Math. Prob. Engg. 2008 (2008), Article ID 954794, doi:10:1155/2008/954794.
  21. M. A. Noor and S. T. Mohyud-Din, Variational iteration method for unsteady flow of gas through a porous medium using He's polynomials and Pade approximants, Comput. Math. Appl. (2008).
  22. M. A. Noor and S. T. Mohyud-Din, Solution of twelfth-order boundary value problems by variational iteration technique, J. Appl. Math. Computg (2008), DOI: 10.1007/s12190-008-0081-0.
  23. M. A. Noor and S. T. Mohyud-Din, Variational homotopy perturbation method for solving higher dimensional initial boundary value problems, Math. Prob. Engg. (2008), Article ID 696734, doi:10.1155/2008/696734.
  24. M. A. Noor and S. T. Mohyud-Din, Modified variational iteration method for heat and wave-like equations, Acta Applnda. Mathmtce. (2008), DOI: 10.1007/s10440-008-9255-x.
  25. M. A. Noor and S. T. Mohyud-Din, Modified variational iteration method for solving Helmholtz equations, Comput. Math. Modlg. (2008).
  26. M. A. Noor and S. T. Mohyud-Din, Variational iteration method for solving twelfth-order boundary value problems using He's polynomials, Comput. Math. Modlg. (2008).
  27. M. A. Noor and S. T. Mohyud-Din, A reliable approach for higher-order integro differential equations, Apl. Appl. Math. (2008).
  28. A. M. Wazwaz, A reliable algorithm for solving boundary value problems for higher order Integro differential equations, Appl. Math. Comput. 118 (2000), 327-342.
  29. A. M. Wazwaz, A study on a boundary layer equation arising in an incompressible field, Appl. Math. Comput. 87 (1997), 1999-204. https://doi.org/10.1016/S0377-0427(97)00185-4