A COMPUTATIONAL MODEL FOR OSMOSIS PHENOMENA OF CELLS THROUGH SEMI-PERMEABLE MEMBRANES

  • Kim, Im-Bunm (DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY) ;
  • Ha, Tae-Young (NATIONAL INSTITUTE FOR MATHEMATICAL SCIENCES) ;
  • Sheen, Dong-Woo (DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY)
  • Received : 2009.05.08
  • Accepted : 2009.05.25
  • Published : 2009.06.25

Abstract

The effect of a solute concentration difference on the osmotic transport of water through the semi-permeable membrane of a simple cell model is investigated. So far, most studies on osmotic phenomena are described by simple diffusion-type equations ignoring all fluid motion or described by Stokes flow. In our work, as the governing equations, we consider the coupled full Navier-Stokes equations which describe the fluid motion and the full transport equation that takes into account of convection and diffusion effects. A two dimensional finite difference model has been developed to simulate the velocity field, concentration field, and semi-permeable membrane movement. It is shown that the cell swells to regions of lower solute concentration due to the uneven water flux through the semi-permeable membrane. The simulation is applied on a red blood cell geometry and the relevant results are presented.

Acknowledgement

Supported by : Korean Research Foundation

References

  1. J.L. Anderson. Movement of a semi-permeable vesicle through an osmotic gradient. Phys. Fluids, 26:2871-2879, 1983. https://doi.org/10.1063/1.864051
  2. R.P. Batycky, R. Hammerstedt, and D.A. Edwards. Osmotically driven intracellular transport phenomena. Phil. Trans. R. Soc. Lond. A., 355:2459-2488, 1997. https://doi.org/10.1098/rsta.1997.0143
  3. E. Evans and Y.C. Fung. Improved measurements of the erythrocyte geometry. Microvasc. Res., 4:335-347, 1972. https://doi.org/10.1016/0026-2862(72)90069-6
  4. R.H. Hammerstedt, J.K. Graham, and J.P. Nolan. Cryopreservation of mammalian sperm: what we ask them to survive. J. Androl., 11:73-88, 1990.
  5. M. Jaeger, M. Carin, M. Medale, and G. Tryggvason. The osmotic migration of cells in a solute gradient. Biophys. J., 77:1257-1267, 1999. https://doi.org/10.1016/S0006-3495(99)76977-8
  6. T. Khan and P.M. Reppert. A finite element simulation of frequency-dependent electro-osmosis. J. Colloid and Interface Science, 290:574-581, 2005. https://doi.org/10.1016/j.jcis.2005.04.042
  7. N.B. Kirichenko. Natural convection in a horizontal in a non-flow-through reverse-osmosis cell. Theoretical foundations of chemical engineering, 39:310-318, 2005.
  8. R.L. Levin, E.G. Cravalho, and C.E. Huggins. Effect of hydration on the water content of human erythrocytes. Biophy. J., 16:1411-1426, 1976. https://doi.org/10.1016/S0006-3495(76)85784-0
  9. S.K. Li, A.H. Ghanem, and W.I. Higuchi. Pore charge distribution considerations in human epidermal membrane electroosmosis. J. Pharm. Sci., 88:1044-1049, 1999. https://doi.org/10.1021/js980442x
  10. J. Liu, J.A. Christian, and J.K. Critser. Canine RBC osmotic tolerance and membrane permeability. Cryobiology, 44:258-268, 2002. https://doi.org/10.1016/S0011-2240(02)00032-9
  11. R. Madhusudan, J. Lin, and S. Murad. Molecular simulation of osmosis, reverse osmosis and electro-osmosis in fluid mixtures using semi-permeable membranes. Fluid phase equilibria, 150-151:97-105, 1998. https://doi.org/10.1016/S0378-3812(98)00280-5
  12. P. Mazur. Freezing of living cells: mechanisms and implications. Amer. J. Physiol., 247:C125-C142, 1984.
  13. P. Mazur,W.F. Rall, and S.P. Liebo. Kinetics of water loss and likelihood of intracellular freezing in the mouse ova. Cell Biophys., 6(3):197-213, 1984. https://doi.org/10.1007/BF02788619
  14. S. Murad, K. Oder, and J. Lin. Molecular simulation of osmosis, reverse osmosis and electro-osmosis in aqueous and methanolic electrolyte solutions. Molecular Physics, 95(3):401-408, 1998. https://doi.org/10.1080/00268979809483173
  15. S. Murad and J.G. Powels. Computer simulation of osmosis and reverse osmosis in solutions. Chem. Phys. Lett., 225:437-440, 1994. https://doi.org/10.1016/0009-2614(94)87108-6
  16. T.J. Pedley. Natural convection driven by osmosis. SIAM J. Appl. Math., 42(6):1202-1216, 1982. https://doi.org/10.1137/0142084
  17. P.J. Quinn. A lipid-phase separation model of low temperature damage to biological membranes. Cryobiol., 22:128-146, 1989.
  18. E. Rony and A. Tourin. A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal., 29(3):867-884, 1992. https://doi.org/10.1137/0729053
  19. S. Shiba, S. Hino, Y. Hirato, and T. Seno. Removal of heavy metal from soil and groundwater by in-situ electrokinetic remediation. Water Sci. Technol., 42(7-8):335-343, 2000.
  20. S. Sourirajan. Reverse Osmosis. Academic Press, New York, 1970.
  21. M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible twophase flow. J. Comp. Phys., 114:146-159, 1994. https://doi.org/10.1006/jcph.1994.1155
  22. K. Zhou and L. Song. Experimental study of water and salt fluxes through reverse osmosis membranes. Environ. Sci. Technol., 39:3382-3387, 2005. https://doi.org/10.1021/es0403561
  23. D. Zinemanas and A. Nir. Osmophoretic motion of deformable particles. Int. J. Multiphase Flow, 21:787-800, 1995. https://doi.org/10.1016/0301-9322(95)00009-M