• Title/Summary/Keyword: differential advantage

Search Result 115, Processing Time 0.022 seconds

Fractional Multi-bit Differential Detection Technique for Continuous Phase Modulation

  • Lee, Kee-Hoon;Seo, Jong-Soo
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.635-640
    • /
    • 2004
  • A new low-complexity differential detection technique, fractional multi-bit differential detection (FMDD), is proposed in order to improve the performance of continuous phase modulation (CPM) signals such as Gaussian minimum shift keying (GMSK) and Gaussian frequency shift keying (GFSK). In comparison to conventional one-bit differential detected (1DD) GFSK, the FMDD-employed GFSK provides a signal-to-noise ratio advantage of up to 1.8 dB in an AWGN channel. Thus, the bit-error rate performance of the proposed FMDD is brought close to that of an ideal coherent detection while avoiding the implementation complexity associated with the carrier recovery. In the adjacent channel interference environment, FMDD achieves an even larger SNR advantage compared to 1DD.

  • PDF

Differential Game Approach to Competitive Advertising Model

  • Park, Sung-Joo;Lee, Keon-Chang
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.95-105
    • /
    • 1986
  • This paper presents an adaptive algorithm to generate a near-optimal closed-loop solution for a non-zero sum differential game by periodically updating the solutions of the two-point boundary-value problem. Applications to competitive advertising problem show that the adaptive algorithm can be used as an efficient tool to solve the differential game problem in which one player may take advantage of the other's non-optimal play.

  • PDF

Design of nonlinear variable structure controller using differential geometric methods (미분기하학 방법을 이용한 비선형 가변구조 제어기 설계)

  • 함철주;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1227-1233
    • /
    • 1993
  • In this paper we present the differential geometric approach for the analysis and design of sliding modes in nonlinear variable structure feedback systems. We also design the robust controller for the nonlinear system using variable structure control theory on the basis of differential geometric methods and feedback linearization applying Min-Max control based on the Lyapunov second method. The robustness against parameter uncertainties for robot manipulators with flexible joint is considered. Simulation results are presented and show the advantage of the proposed nonlinear control method.

  • PDF

Single-ended Differential RF Circuit Topologies Utilizing Complementary MOS Devices

  • Kim, Bonkee;Ilku Nam;Lee, Kwyro
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.7-18
    • /
    • 2002
  • Single-ended differential RF circuit topologies fully utilizing complementary characteristics of both NMOS and PMOS are proposed, which have inherent advantage of both single-ended and differential circuits. Using this concept, we propose a CCPP (Complementary CMOS parallel push-pull) amplifier which has single-ended input/output with differential amplifying characteristics, leading to more than 30 dB improvement on $IIP_2$. In addition, complementary resistive mixer is also proposed, which provides not only differential IF outputs from single-ended RF input, but much better linearity as well as isolation characteristics. Experimental results using $0.35{\;}\mu\textrm{m}$ CMOS process show that, compared with conventional NMOS resistive mixer, the proposed mixer shows 15 dB better LO-to-IF isolation, 4.6 dB better $IIP_2$, and 4.5 dB better $IIP_3$performances.

Accurate buckling analysis of rectangular thin plates by double finite sine integral transform method

  • Ullah, Salamat;Zhang, Jinghui;Zhong, Yang
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.491-502
    • /
    • 2019
  • This paper explores the analytical buckling solution of rectangular thin plates by the finite integral transform method. Although several analytical and numerical developments have been made, a benchmark analytical solution is still very few due to the mathematical complexity of solving high order partial differential equations. In solution procedure, the governing high order partial differential equation with specified boundary conditions is converted into a system of linear algebraic equations and the analytical solution is obtained classically. The primary advantage of the present method is its simplicity and generality and does not need to pre-determine the deflection function which makes the solving procedure much reasonable. Another advantage of the method is that the analytical solutions obtained converge rapidly due to utilization of the sum functions. The application of the method is extensive and can also handle moderately thick and thick elastic plates as well as bending and vibration problems. The present results are validated by extensive numerical comparison with the FEA using (ABAQUS) software and the existing analytical solutions which show satisfactory agreement.

Differential Fault Attack on SSB Cipher (SSB 암호 알고리즘에 대한 차분 오류 공격)

  • Kang, HyungChul;Lee, Changhoon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.48-52
    • /
    • 2015
  • In this paper, we propose a differential fault analysis on SSB having same structure in encryption and decryption proposed in 2011. The target algorithm was designed using advanced encryption standard and has advantage about hardware implementations. The differential fault analysis is one of side channel attacks, combination of the fault injection attacks with the differential cryptanalysis. Because SSB is suitable for hardware, it must be secure for the differential fault analysis. However, using proposed differential fault attack in this paper, we can recover the 128 bit secret key of SSB through only one random byte fault injection and an exhausted search of $2^8$. This is the first cryptanalytic result on SSB having same structure in encryption and decryption.

The Mathematic Model of “Pressing Complexion”Differential Coefficient Countermeasure Decision for Collision-avoidance

  • Cai, Feng;Shi, Aiguo;Yang, Baozhang;Zhou, Lixin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.81-87
    • /
    • 2001
  • In this article, we have done some analysis about the collision-avoidance specialty of “pressing complexion” and “pressing danger”in the meet process of two boats, and offered a mathematic model of differential coefficient countermeasure decision for collision-avoidance, which adapt to the right complexion. The basal idea is, in the right condition whatever do the coming boat do, and our boat will always adept dynamic, continuous and the best countermeasure. When both the controlling capabilities of two boats have advantage and inferior position, we can working-out with the qualitative differential coefficient countermeasure.

  • PDF

Characteristics on the Output Coupled Type CVT Combined Differential Gear Unit (차동기어장치를 적용한 출력축 연결방식 무단변속기의 특성해석에 관한 연구)

  • Choi, Sang-Hoon;Kim, Yeon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.205-215
    • /
    • 2001
  • Continuously variable transmission(CVT) mechanisms considered here combine the functions of a 2K-H I type differential gear unit and a V-belt continuously variable unit(CVU). One shaft of the V-belt CVU is connected directly to the differential gear unit and remaining shaft of it is linked to the output shaft. These mechanisms have many advantage which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range, and the generation of geared neutral. In this paper six different mechanisms of output coupled type CVT are proposed. Some useful theoretical formula related to speed ratio, power flow and efficiency are derived and analyzed, and theoretical analysis are proven by various experiments.

  • PDF

Regional Differential Development as an Alternative Regional Development Theory (대안적 지역발전론으로서 지역차이발전론)

  • Lee, Jae-Ha
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.1
    • /
    • pp.140-157
    • /
    • 2012
  • Most of global citizens in the globalization era want to live peacefully in the symbiotic relationship among each region or locality with its identity. From this perspective, the new regionalist models of development such as new industrial districts, industrial clusters, regional innovation systems, and global city-regions isn't helpful to most of regions because they were developed to increase the global competitiveness of industrial region from a few advanced industrial areas. This study attempts to develop 'regional differential development' as an alternative regional development theory. This theory puts emphasis on the truth that the difference or differential industry between regions in the real world connotes two essential values of development like the symbiosis of global citizens and the regional identity. Regional differential development seeks the development of regional differential industry on the basis of geographical elements with differential advantage, and hence it reviews significantly geographical elements including location, natural environment(landform, soil, climate, etc.), natural resources, population, transportation, culture, and landscape which appear substantially differently among regions. And to realize regional differential development successfully, it is crucial that actors(government, company, related institutions, and regional residents) actively participate and play each complementary role in the relationship of cooperation and conflict. Further study needs to secure the universal validity of this theory through many empirical studies.

  • PDF

Microcontroller based split mass resonant sensor for absolute and differential sensing

  • Uma, G.;Umapathy, M.;Kumar, K. Suneel;Suresh, K.;Josephine, A. Maria
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.279-290
    • /
    • 2009
  • Two degrees of freedom resonant systems are employed to improve the resonant property of resonant sensor, as compared to a single degree of freedom resonant system. This paper presents design, development and testing of two degrees of freedom resonant sensor. To measure absolute mass, cantilever shaped two different masses (smaller/absorber mass and bigger/drive mass) with identical resonant frequency are mechanically linked to form 2 - Degree-of-Freedom (DOF) resonator which exhibits higher amplitude of displacement at the smaller mass. The same concept is extended for measuring differential quantity, by having two bigger mass and one smaller mass. The main features of this work are the 3 - DOF resonator for differential detection and the microcontroller based closed loop electronics for resonant sensor with piezoelectric sensing and excitation. The advantage of using microcontroller is that the method can be easily extended for any range of measurand.