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Abstract

This paper presents an adaptive algorithm to genetate a near-optimal closed-loop solution for a
non.zero sum differential game by periodically updating the solutions of the two-point boundary-value

problem.
Applications to competitive advertising problem show that the adaptive algorithm can be used as

an efficient tool to solve the differential game problem in which one player may take advantage of the
other’s non-optimal play.

1. Introduction

Deal and Zionts [8, 9] derived the open-loop control for the case in which two players aiways
choose their optimal strategies against each other. However, it has been pointed out that the closed-loop
control laws are needed to develop a generalized differential game model in which one player can take
advantage of the competitor’s non-optimal play [2, 7, 10].

Anderson [2] developed a robust technique to derive the near-optimal solution which can be
applied to realistic non-inear differential game problem. The purpose of this paper is to improve Ander-
son’s method so that it can be applied to the analysis of the market behaviors of a new-entering com-
pany (PURSUER) and its target company (EVADER), i.e., pursuit-evasion game.

2. Differential Game

(1) Overview

* Department of Management Science, Korea Advanced Institute of Science and Technology



The study of differential game was initiated by Issacs [11]. Berkowitz and Flemming [5] applied
rigorous classical variational techniques to simple differential games and Berkowitz [6] expanded the
applicable class of problems. Typical structure of the differential game problem can be briefly described
as follows [10] : Determine a saddle point for

T=olttphe] + |7 Lxmviat M
10
subject to the constraints

x =f(x,u,v,t)

x (ty) = X, (2)
¥ [x () t] =0
and ueU(t), veV(t) (3)

where J is the payoff, x and x’ are the (vector) position or state of the game and its derivative, tf and t,,
are terminal time and initial time, u and v are piecewise continuous vector functions called strategies,
¥(.} is an algebraic terminal condition. A saddle point is defined as the pair (u*v*) satisfying the rela-
tion

T(u*, v) =T (u*, v = 1 (u, v¥) (4}

for arbitrary 'ueU, veV. If equation (4) can be realized, u* and v* are called optimal pure strategies and

J(u*, v*) is called the value of the game or performance value. Differential game problem is always a
minimax case. Control vectors u and v try to minimize and maximize the value of the game, respectively.
The vector f and the scalar L are both assumed to be separable in u and v (separability condition) which
are also assumed to be independent of state vector x.

(2} Pursuit-evasion game
In the structure of the pursuit-evasion game, the maximizing player is generalty an “‘evader” and the
minimizing player a “pursuer”. Note that in the context of the pursuit-evasion game, the pursuer should
always have the “pursuit mechanism”, by which the pursuer can pursue and even capture the evader.
In engineering problem, the pursuer’s system should be “more controllable” than the evader’s. The

pursuit mechanism in management applications is not easy to define and can be termed as a “strategic
market planning” {1].

3. An Adaptive Algorithm
(1) Statement of the problem

Consider the equations for differential game (1) through (3). Suppose that terminal time tg is speci-
fied. The Hamiltonian is

H=L{x,u,v,t)+ ATE (x,u, v, 1) (5)
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where X is an n-dimensional costate vector. The costate equations and transversality conditions on A
(tf) are

AT= —H, (x,u,v1),
Mt = @xt 2 ¥ )|ty

where v is a scalar Lagrange multiplier and ' H, . is the derivative of H with respect to X.

The optimal control for the pursuer, u*(xA,t) is found by minimizing H with respect to u, while
the evader’s optimal control v*(x\.t) is found by maximizing H with respect to v. Substituting these
expressions for u*(x,A,t) and v*(x,\t) into the state and costate differential equations, the following
TPBVP (Two-Point Boundary-Value Problem) is obtained :

x = f{x, A1)
A =gt _
x{to) = x4 (6)

}\(tf) = (¢x + lex) tf
¥ Ix(tp).te] = 0

(2} Algorithm Formulation

Suppose that at time t,,a deviation §x between the actual state and the reference state caleulate
from the TPBVP solution emerges from evader’s non-optimal play. '

8x(ty) gives rise to a change in the costate, i.e., 5A(t;). To find the resulting 6A(t;) as a function of
8x(t1). consider the linearized state and costate equations '

x' = £y 8x + H5\ : (7
N =g 8x 4 gyh ' (8)

Also 5x(t, ) invokes 8x(tg), SA(tp), and dv.
Lincarizing the conditions at t¢in the TPBVP and using dt{=0, we obtain

BN = ey |1 53G9) | | ©)

When terminal time is either free or fixed, SX(tf) can always be expressed as a function of 8x(tp) in
the form

SNt) = ASx(tp) (10)

where A is n X n matrix.
Then the solution for equations (7) and (8) can be written as

BX(t) = Byy(t, tp) Sx(tf) + By (1, tg) N(tp)



= [yt t) + By, (1, tIA] Sx(tf) ' (11)
Mt) = Py (1, 15) Sx(te) + By(t, to) SA(ty)
= [Eyx (t. tf) + By (L, tpA] dx(tp) (12)

where & matrices are fundamental matrices [12].
Using equations (11) and (12), 8x(1; ) can be obtained as a function of §x{t; ), that is,

Mty) = [Opx(ty. 1) + Paalts, tDA] [Bgx (tr 1) + Pa(t, tA] ] Bx(ty) (13)

After the TPBVP solution is updated at t; using equation (13), 2 forward integration of the updated
solution to the final conditions usually results in terminal conditions that do not satisfy the transversa-
lity conditions. With these new end conditions, the TPBVP and fundamental matrices should be inte-
grated backward from ty to the next updating time. This then yields all the information required to
obtain a new optimal reference solution which is used to update the TPBVP solution,

The procedures discussed above constitute a “near-optimal” method.

4. Applications to Competitive Advertising Model
(1) Competitive Advertising Model

Deal’s advertising model [8] is taken as a prototype example:

MAXT; = wixi(t) [xa(t) + i) + |7 e - ui i@
1 t

MAXJ; = waso (9D + a9 + [ 7 feata - m @)t
subject to

X1 () = -2, %1 (1) + by 0y () [Mx, () - x, (1)) /M
X (1) = 23%3 (1) + by uy (t) [Mx, (t) - 2 ()] /M,
x1(to), X2 (to) given,

15 {£), ua (1), x5 (£), x,{(t) > 0.

where xi(t) is the sales rate of fitm i at time t, x'(t) is the first derivative with respect to time, a; > 0 is
a decay parameter, bj > O is an advertising effectiveness parameter, uy(t) is the rate of advertising ex-
penditures of firm i at time t, wi(t) is the weighting factor for the performance index, and M is the total

potential market size.
It is assumed that total poteniial market size is fixed at M of sales and that advertising affects

sales but sales do not directly determine the level of advertising.
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Integral form in performance indices shows that the advertising media is assumed to be relatively
continuous such as radio, television, and newspapers. Also, performance index indicates that a weighting

factor, w;, is allowed to vary from total profit orientation to terminal market share orientation cases.
System dynamic equations represent that there is a recognition of the competition’s effect and that
each of the market competitors has essentially the same form for its dynamics and that the sales effec-
tiveness of succeeding advertising expenditures diminishes as both firm’s sales increase.

(2) Computational Results and Implications

Numerical algorithm presented in section 3 is applied to the competitive advertising model above.
Flowchart of the solution procedure is shown in Figure 1.
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Figure 1. Flowchart of the solution procedure
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Parameters of the prototype example are assumed to be given as

a; = 0.20 a3 = 0.25

by = 1.10 by = 1.10

c; = 0.60 . c; = 0.80

wy, = 150 wy = 8,00
x1{tg) = 400 X,(te) = 100.0
u;{t) = 1.00 u(t) = 1.00

where pursuer and evader are denoted as 1 and 2, respectively. M is given 500.0 and te[0.0, 5.0] and time
is discretized into 1.0 for analytical simplicity. Each of the firms involved in the game is assumed to have
perfect knowledge of the model parameters. From the parameter values and initial values, it is easily
verified that the pursuer has a strong desire to raise the current market share up to the evader’s at the
terminal pianning time (note that the pursuer’s weighting constant for the relative terminal market
shate, wy, is greater than the evader’s w,) and that the pursuer is supposed to advertise effectively (note
that pursuer’s decay parameter a, is smaller than the evader’s a,). Table shows the state deviations
observed,

Table 1, State Deviations Observed

Time _Pursuer Evader
1.0 —10 20
20 -05 -1.5
3.0 0.0 -10
40 0.5 —0.5

The computational results are summarized in Tables 2 and 3. Figures 2 and 3 represent the optimal
trajectories of the reference solutions calculated from TPBVP and the updated state values, 1espectively.

Pursuer Evader
Before® After** Before ;ft_er_
performance value  : 180.86 238.72 6;2_.-.‘_39_ T -;E;; ._9_0
terminat market
share (%) 7.80 1395 19.80 41.10

*: before applying an adaptive algorithm
**: after applying an adaptive algorithm
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Table 3. Deviations of Advertising Expenditures After Applying
The Adaptive Algorithm

Time Pursuer Evader
20 B571E02 9665E02
3.0 AG6T2E02 S464E02
4.0 1540EQ2 A867E02
5.0 —4484E-04 2166E04

Table 2 represents that the pursuer’s terminal market share increases by the amount of 12.0% when
the algorithm is applied. It can be observed in Figure 2 that at earlier planning period, the effects of
advertising expenditures, have a great impact on the state values to yield higher sales level and diminish
as time reaches to ty. _

Figure 3 shows that updated reference value X1 and x; at time 3.0 are very large as compared with
the original reference values. This results from the most negative deviation of state values af time 1.0
(see Table 1) which causes the greatest increase of advertising expenditures at time 2.0 (see Table 3)
to make the sales level at time 3.0 higher than any other state values. Tables 4, 5 and 6 illustrate the
computational results for various parameter values. Tables 5 and & show that pursuer can improve his
advertising policy during differential game to obtain higher performance value and terminal market
share when using the adaptive algorithm as a tool to build up an advertising strategy which could be
taken as an useful pursuit mechanism,
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Figure 2, Optimal Trajectories of Reference Solution
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Figure 3. Optimal Trajectories of Updated State Values

Table 4. Parameter Values and Initial State Values
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Table 5. Comparison of Performance Values

Pursuer Evader
Case Before After Before After
1 157.90 21490 517.06 701 .65
2 164.08 221,15 514.89 699.48
3 192.19 250.53 410.51 555.13
4 27297 234,12 52388 712.25
5 17056 232.70 52388 712,25
6 152.77 194,10 52377 712.00
7 133.70 159.04 523.68 710.77
8 174.67 237.30 779.89 1287.29
9 227.48 350.85 103545 1935.57
10 180.86 23872 692 89 98390
11 33.50 36.33 155.05 199.32
12 3249 3537 156.30 202 .89
13 31.67 3481 160.75 210.08
14 38.07 42 .45 488.25 661.72
Table 6. Comparison of Terminal Market Shares
Pursuer Evader
Case Before After Before After
1 7.60(%) 1542(%) 19.70(%) 40.83(%)
2 7.60 1542 1970 40.83
3 9.70 19.86 1570 32.28
4 7.90 1646 1985 41.30
5 7.90 1646 19.84 41.30
6 7.80 14.04 19.85 41.29
7 7.70 11.92 19.86 41.28
8 7.80 16.49 1991 65.52
9 7.90 22.38 19.93 88.74
10 7.80 13.90 19.80 41.10
11 6.01 7.73 6.01 10.96
12 8.07 10.42 8.03 14.87
13 12.17 15.94 12.07 23.01
14 _ 1482 _19.94 3472 72.10

|
|
i
I
!

-103 -



(3) Comparison with Anderson’s Method

Computational results obtained by applying Anderson’s solution procedure [2] to the prototype
example mentioned zbove are summarized in Table 7,

Table 7. Comparative Results for Prototype Example

Pursuer Evader
After Anderson* After Anderson
performance value : 238.72 229.94 98390 941.07
terminal market share(%) : 1395 13.94 41.10 41.10

* : applying an Anderson’s method

Table 7 shows that the adaptive algorithm proposed in this paper gives higher performance value
than Anderson’s method and yields almost the same terminal market share as Anderson’s method.
Simulation experiments indicate that for the case 3, 10 in Table 4, the adaptive algorithm yields more
efficient strategy and higher performance value to the pursuer than Anderson’s method and shows the
same results as Anderson’s method for the other cases in Table 4.

5. Concluding Remarks

This paper extended the applicability of differential game to a marketing decision problem under
the duopolistic competition by developing an adaptive algorithm for updating the solutions of TPBVP.
The algorithm turned out to be efficient for establishing the advertising policy of a new-entering com-
pany, thereby ensuring higher performance value and terminal market share.

The algorithm can also be used in selecting the optimal combination of marketing strategies such as
pricing, market segmentation, product mix, and entry timing.
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