• Title/Summary/Keyword: deviating argument

Search Result 9, Processing Time 0.019 seconds

ASYMPTOTIC BEHAVIOR OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENT

  • Yang, Yitao;Meng, Fanwei
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.333-343
    • /
    • 2010
  • The asymptotic behavior of solutions of higher order differential equations with deviating argument $$(py^{(n-1)}(t))'\;+\;\sum\limits_{i=1}^{n-1}ci(t)y^{(i-1)}(t)\;=\;f\[t,\;y(t),\;y'(t),\;{\ldots},\;y^{(n-1)}(t),\;y(\phi(t)),\;y'(\phi(t)),\;{\ldots},\;y^{(n-1)}\;(\phi(t))\]\;\;\;\;(1)$$ $t\;{\in}\;[0,\;\infty)$ is studied. Our technique depends on an integral inequality containing a deviating argument. From this we obtain some sufficient conditions under which all solutions of Eq.(1) have some asymptotic behavior.

EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR A KIND OF RAYLEIGH EQUATION WITH A DEVIATING ARGUMENT

  • Zhou, Qiyuan;Xiao, Bing;Yu, Yuehua;Liu, Bingwen;Huang, Lihong
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.673-682
    • /
    • 2007
  • In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for a kind of Rayleigh equation with a deviating argument of the form $x'+f(x'(t))+g(t,\;x(t-\tau(t)))=p(t)$.

PERIODIC SOLUTIONS FOR DUFFING TYPE p-LAPLACIAN EQUATION WITH MULTIPLE DEVIATING ARGUMENTS

  • Jiang, Ani
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.27-34
    • /
    • 2013
  • In this paper, we consider the Duffing type p-Laplacian equation with multiple deviating arguments of the form $$({\varphi}_p(x^{\prime}(t)))^{\prime}+Cx^{\prime}(t)+go(t,x(t))+\sum_{k=1}^ngk(t,x(t-{\tau}_k(t)))=e(t)$$. By using the coincidence degree theory, we establish new results on the existence and uniqueness of periodic solutions for the above equation. Moreover, an example is given to illustrate the effectiveness of our results.

OSCILLATION CRITERIA FOR DIFFERENCE EQUATIONS WITH SEVERAL OSCILLATING COEFFICIENTS

  • Bohner, Martin;Chatzarakis, George E.;Stavroulakis, Ioannis P.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.159-172
    • /
    • 2015
  • This paper presents a new sufficient condition for the oscillation of all solutions of difference equations with several deviating arguments and oscillating coefficients. Corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.

APPROXIMATIONS OF SOLUTIONS FOR A NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT

  • CHADHA, ALKA;PANDEY, DWIJENDRA N.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.699-721
    • /
    • 2015
  • This paper investigates the existence of mild solution for a fractional integro-differential equations with a deviating argument and nonlocal initial condition in an arbitrary separable Hilbert space H via technique of approximations. We obtain an associated integral equation and then consider a sequence of approximate integral equations obtained by the projection of considered associated nonlocal fractional integral equation onto finite dimensional space. The existence and uniqueness of solutions to each approximate integral equation is obtained by virtue of the analytic semigroup theory via Banach fixed point theorem. Next we demonstrate the convergence of the solutions of the approximate integral equations to the solution of the associated integral equation. We consider the Faedo-Galerkin approximation of the solution and demonstrate some convergenceresults. An example is also given to illustrate the abstract theory.

Leibniz-Clark Controversy on the Nature of Space and Hole Argument (공간의 본성에 대한 라이프니츠-클라크 논쟁과 홀 논변)

  • Yang, Kyoung-eun
    • Journal of Korean Philosophical Society
    • /
    • v.144
    • /
    • pp.235-256
    • /
    • 2017
  • This essay considers Leibniz-Clark correspondence on the nature of space and hole argument. The ontology of space had been debated under the name of substantivalism-relationism controversy. The debates between the two parties are concerned with the nature of existence of parts of space-time. Substantivalism claims that the point of space-time has existence analogous to that of material substance. Relationism argues that space-time should be understood as the framework of possible spatio-temporal relations between bodies. Although these two approaches attempt to respect theoretical context, it seems that the problems of these two interpretive schemes stems from the lack of understanding of the structure of space-time theories, especially how space-time is connected with the laws of motion. In order to appreciate the substance-relation controversy without deviating from the context of space-time theories, it is necessary then to capture how space-time theories are constituted. This essay offers the clear connection of ontology of space-time with present practices of theoretical physicists.

NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS ARISING IN CHEMICAL REACTOR THEORY

  • Andargie, Awoke
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.411-423
    • /
    • 2010
  • In this paper, a numerical method for singular perturbation problems arising in chemical reactor theory for general singularly perturbed two point boundary value problems with boundary layer at one end(left or right) of the underlying interval is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

NUMERICAL INTEGRATION METHOD FOR SINGULAR PERTURBATION PROBLEMS WITH MIXED BOUNDARY CONDITIONS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1273-1287
    • /
    • 2008
  • In this paper, the numerical integration method for general singularly perturbed two point boundary value problems with mixed boundary conditions of both left and right end boundary layer is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

  • PDF