
J. Appl. Math. & Informatics Vol. 33(2015), No. 5 - 6, pp. 723 - 738
http://dx.doi.org/10.14317/jami.2015.723

HOMOCLINIC SOLUTIONS FOR A PRESCRIBED MEAN

CURVATURE RAYLEIGH p-LAPLACIAN EQUATION WITH A

DEVIATING ARGUMENT†

FANCHAO KONG

Abstract. In this paper, the prescribed mean curvature Rayleigh p-Laplacian
equation with a deviating argument(

φp(
u′(t)√

1 + (u′(t))2
)
)′

+ f(u′(t)) + g(t, u(t− τ(t))) = e(t)

is studied. By using Mawhin’s continuation theorem and some analysis
methods, we obtain the existence of a set with 2kT -periodic solutions for
this equation and then a homoclinic solution is obtained as a limit of a

certain subsequence of the above set.
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1. Introduction

In resent years, The existence of homoclinic solutions have been studied
widely, especially for the Hamiltonian systems and the p-Laplacian systems(see
[1-4]). For example, in [1], Lzydorek, M and Janczewska, J studied the ho-
moclinic solutions for a class of the second order Hamiltonian systems as the
following form

q̈ + Vq(t, q) = f(t)

where q ∈ Rn and V ∈ C1(R × Rn, R), V (t, q) = −K(t, q) + W (t, q) is T -
periodic in t. And in [4], Lu, SP studied the homoclinic solutions for a class of
second-order p-Laplacian differential systems with delay of the form

d

dt
[φp(u

′(t))] +
d

dt
∇F (u(t)) +∇G(u(t)) +∇H(u(t− γ(t))) = e(t)
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Nowadays, the prescribed mean curvature equation and its modified forms,
which arises from some problems associated with differential geometry and physics
such as combustible gas dynamics [5-7] have been studied widely. As researchers
continue to study the prescribed mean curvature equation, the existence of
the periodic solutions for the prescribed curvature mean equation attracts re-
searchers’ attention and there are many papers about the existence of the peri-
odic solutions for the prescribed curvature mean equation. For example, in [11],
Feng discussed the existence of periodic solutions of a delay prescribed mean
curvature Liénard equation of the form

(
u′(t)√

1 + (u′(t))2
)′ + f(u(t))u′(t) + g(t, u(t− τ(t))) = e(t)

and in [12], Jin Li discussed the existence of periodic solutions for a prescribed
mean curvature Rayleigh equation of the form

(
u′(t)√

1 + (u′(t))2
)′ + f(t, u′(t)) + g(t, u(t− τ(t))) = e(t)

As is well known, a solution u(t) of Eq.(1.1) is named homoclinic (to 0) if
u(t) → 0 and u′(t) → 0 as |t| → +∞. In addition, if u ̸= 0, then u is called a
nontrivial homoclinic solution.

In [13], Liang and Lu studied the homoclinic solution for the prescribed mean
curvature Duffing-type equation of the form

(
u′(t)√

1 + (u′(t))2
)′ + cu′(t) + f(u(t)) = p(t)

where f ∈ C1(R,R), p ∈ C(R,R), c > 0 is a given constant.
Recently, in [14], Wang studied the periodic solution for the following pre-

scribed mean curvature Rayleigh equation with a deviating argument of the
form: 

(
φp(

x′(t)√
1+(x′(t))2

)
)′

+ f(t, x′(t)) + g(t, x(t− τ(t))) = e(t)

x1(0) = x1(ω), x2(0) = x2(ω)
(1)

where p > 1 and φp : R → R is given by φp(s) = |s|p−2s for s ̸= 0 and φp(0) = 0,
g ∈ C(R2, R), e, τ ∈ C(R,R), g(t + ω, x) = g(t, x), f(t + ω, x) = f(t, x),
f(t, 0) = 0, e(t+ ω) = e(t) and τ(t+ ω) = τ(t). Under the assumptions:

f(t, x) ≥ a|x|r, ∀(t, x) ∈ R2

and

g(t, x)− e(t) ≥ −m1|x| −m2, ∀t ∈ R, x > d.
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where a, r ≥ 1; m1 and m2 are positive constants. Through the transformation,
(1) is equivalent to the system

x′
1(t) = ϕ(v(t)) =

φq(x2(t))√
1−φ2

q(x2(t))

x′
2(t) = −f(t,

φq(v(t))√
1−φ2

q(v(t))
)− g(t, u(t− τ(t))) + e(t),

x1(0) = x1(ω), x2(0) = x2(ω)

(2)

By using Mawhin’s continuation theorem and given some sufficient conditions,
the authors obtained that Eq.(1) has at least one periodic solution.

However, to the best of our knowledge, there are no papers about the study-
ing of the homoclinic solutions for the prescribed mean curvature Rayleigh p-
Laplacian equation. In order to solve this problem, in this paper, we consider
the following the prescribed mean curvature Rayleigh p-Laplacian equation with
a deviating argument(

φp(
u′(t)√

1 + (u′(t))2
)
)′

+ f(u′(t)) + g(t, u(t− τ(t))) = e(t) (3)

where p > 1 and φp : R → R is given by φp(s) = |s|p−2s for s ̸= 0 and φp(0) = 0,
f ∈ C(R,R), g ∈ C(R2, R) and g is T -periodic in the first argument. e(t), τ(t)
are continuous T -periodic function and T > 0 is a given constant.

In order to study the homoclinic solution for Eq.(3), firstly, like in the work
of Lzydorek and Janczewska in [1], Rabinowitz in [2], X. H. Tang and Li Xiao in
[3] and Lu in [4], the existence of a homoclinic solution for Eq.(3) is obtained as
a limit of a certain sequence of 2kT -periodic solutions for the following equation:(

φp(
u′(t)√

1 + (u′(t))2
)
)′

+ f(u′(t)) + g(t, u(t− τ(t))) = ek(t) (4)

where k ∈ N , ek : R → R is a 2kT -periodic function such that

ek(t) =

{
e(t) t ∈ [−kT, kT − ε0)

e(kT − ε0) +
e(−kT )−e(kT−ε0)

ε0
(t− kT + ε0), t ∈ [kT − ε0, kT ]

(5)
where ε0 ∈ (0, T ) is a constant independent of k. In our approach,the existence of
2kT -periodic solutions to Eq.(4) is obtained by applying Mawhin’s continuation
theorem [16].

The structure of the rest of this paper is as follows: Section 2, we state some
necessary definitions and lemmas. Section 3, we prove the main result.

2. Preliminary

Throughout this paper, | · | will denote the absolute value and the Euclidean
norm on R. For each k ∈ N , let C2kT = {u|u ∈ C(R,R), u(t + 2kT ) = u(t)},
C1

2kT = {u|u ∈ C1(R,R), u(t + 2kT ) = u(t)} and ||u||0 = max
t∈[0,2kT ]

|u(t)|. If

the norms of C2kT and C1
2kT are defined by || · ||Ck

= | · |0 and ||x||C1
2kT

=
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max{|x|0, |x′|0}, respectively, then C2kT and C1
2kT are all Banach spaces. Fur-

thermore, for ϕ ∈ C2kT , ||ϕ||r = (

∫ kT

−kT

|ϕ(t)|rdt) 1
r , where r ∈ (1,+∞).

In order to use Mawhin’s continuation theorem, we first recall it.
Let X and Y be two Banach spaces, a linear operator L : D(L) ⊂ X → Y is said
to be a Fredholm operator of index zero provided that
(a) ImL is a closed subset of Y,
(b) dimKerL = codimImL < ∞.
Let X and Y be two Banach spaces, Ω ⊂ X be an open and bounded set, and
L : D(L) ⊂ X → Y is a Fredholm operator of index zero, and continuous
operator N : Ω ⊂ X → Y is said to be L-compact in Ω̄ provided that
(c)Kp(I −Q)N(Ω̄) is a relative compact set of X,
(d)QN(Ω̄) is a bounded set of Y,
where we denote X1 = KerL, Y2 = ImL, then we have the decompositions
X = X1

⊕
X2, Y = Y1

⊕
Y2, let P : X → X1, Q : Y → Y1 are continuous linear

projectors(meaning P 2 = P and Q2 = Q), and Kp = L |−1
KerP∩D(L).

Lemma 2.1 (16). Let X and Y be two real Banach spaces, and Ω is an open
and bounded set of X, and L : D(L) ⊂ X → Y is a Fredholm operator of index
zero and the operator N : Ω̄ ⊂ X → Y is said to be L-compact in Ω̄. In addition,
if the following conditions hold:
(h1) Lx ̸= λNx, ∀(x, λ) ∈ ∂Ω× (0, 1);
(h2) QNx ̸= 0, ∀x ∈ KerL ∩ ∂Ω;
(h3) deg{JQN,Ω∩KerL, 0} ̸= 0, where J : ImQ → KerL is a homeomorphism,
then Lx = Nx has at least one solution in D(L) ∩ Ω̄.

Lemma 2.2 ([4]). Let s ∈ C(R,R) with s(t+ω) ≡ s(t) and s(t) ∈ [0, ω], ∀t ∈ R.
Suppose p ∈ (1,+∞), α = max

t∈[0,ω]
s(t) and u ∈ C1(R,R) with u(t + ω) = u(t).

Then ∫ ω

0

|u(t)− u(t− s(t))|pdt ≤ αp

∫ ω

0

|u′(t)|pdt

Lemma 2.3. If u : R → R is continuously differentiable on R, a > 0, µ > 1
and p > 1 are constants, then for every t ∈ R, the following inequality holds

|u(t)| ≤ (2a)−
1
µ (

∫ t+a

t−a

|u(s)|µds)
1
µ + a(2a)−

1
p (

∫ t+a

t−a

|u′(s)|pds)
1
p

In order to study the existence of 2kT -periodic solutions for Eq.(1.2), for each
k ∈ N , from (1.3) we observe that ek ∈ C2kT . Let Xk = C1

2kT .

Lemma 2.4 ([18]). Suppose τ ∈ C1(R,R) with τ(t + ω) ≡ τ(t) and τ ′(t) < 1,
∀t ∈ [0, ω]. Then the function t−τ(t) has an inverse µ(t) satisfying µ ∈ C(R,R)
with µ(t+ ω) ≡ µ(t) + ω, ∀t ∈ [0, ω].

Throughout this paper, besides τ being a periodic function with period T , we
suppose in addition that τ ∈ C1(R,R) with τ ′(t) < 1, ∀t ∈ [0, T ].
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Remark 2.1. From the above assumption, one can find from Lemma 2.4 that
the function (t−τ(t)) has an inverse denoted by µ(t). Define σ0 = − min

t∈[0,T ]
τ ′(t),

σ1 = max
t∈[0,T ]

τ ′(t) and ∥ τ ∥0= max
t∈[0,T ]

|τ(t)|. Clearly, σ0 ≥ 0 and 0 ≤ σ1 < 1.

Lemma 2.5 ([3]). Let uk ∈ C2
2kT be a 2kT -periodic function for each k ∈ N

with

|uk|0 ≤ A0, |u′
k|0 ≤ A1, |u′′

k |0 ≤ A2

where A0, A1 and A2 are constants independent of k ∈ N . Then there exists
a function u ∈ C1(R,Rn) such that for each interval [c, d] ⊂ R, there is a
subsequence {ukj} of {uk}k∈N with u′

kj
(t) → u′

0(t) uniformly on [c, d].

The system (4) is equivalent to the system{
u′(t) = ϕ(v(t)) =

φq(v(t))√
1−φ2

q(v(t))

v′(t) = −f(ϕ(v(t)))− g(t, u(t− τ(t))) + ek(t)
(6)

where φq(s) = |sq−2|s, 1
p + 1

q = 1, v(t) = φp(
u′(t)√

1+(u′(t))2
) = ϕ−1(u′(t)).

Let Xk = {ω = (u(t), v(t))⊤ ∈ C(R,R2), ω(t) = ω(t + 2kT )} and Yk =
{ω = (u(t), v(t))⊤ ∈ C(R,R2), ω(t) = ω(t + 2kT )}, where the norm ||ω|| =
max{|u|0, |v|0} with ||u||0 = max

t∈[0,2kT ]
|u(t)| and ||v||0 = max

t∈[0,2kT ]
|v(t)|. It is obvi-

ous that Xk and Yk are Banach spaces.
Now we define the operator

L : D(L) ⊂ Xk → Yk, Lω = ω′ = (u′(t), v′(t))⊤

where D(L) = {ω|ω = (u(t), v(t))⊤ ∈ C1(R,R2), ω(t) = ω(t+ 2kT )}.
Let Zk = {ω = (u(t), v(t))⊤ ∈ C1(R,R × Bk), ω(t) = ω(t + 2kT )}, where

Bk = {x ∈ R, |x| < 1, x(t) = x(t+ 2kT )}. Define a nonlinear operator N : Ω ⊂
(Xk ∩ Zk) ⊂ Xk → Yk as follows:

Nω = (
φq(v(t))√
1− φ2

q(v(t))
,−f(

φq(v(t))√
1− φ2

q(v(t))
)− g(t, u(t− τ(t))) + ek(t))

⊤

where Ω ⊂ Zk ⊂ Xk and Ω is an open and bounded set. Then problem (6) can
be written as Lω = Nω in Ω.

we know

KerL = {ω|ω ∈ Xk, ω
′ = (u′(t), v′(t))⊤ = 0}

then ∀t ∈ R we have u′(t) = 0, v′(t) = 0, obviously u = a1 ∈ R, v = a2 ∈ R, thus

KerL = R2, and it is also easy to prove that ImL = {z ∈ Yk,

∫ 2kT

0

z(s)ds = 0}.
Therefore, L is a Fredholm operator of index zero.

Let

P : Xk → KerL, Pω =
1

2kT

∫ 2kT

0

ω(s)ds
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Q : Yk → ImQ,Qz =
1

2kT

∫ 2kT

0

z(s)ds

Let Kp = L|−1
KerL∩D(L), then it is easy to see that:

(Kpz)(t) =

∫ 2kT

0

Gk(t, s)z(s)ds

where

Gk(t) =

{
s−2kT
2kT , 0 ≤ t ≤ s;
s

2kT , s ≤ t ≤ 2kT.

For all Ω such that Ω ⊂ (Xk ∩ Zk) ⊂ Xk, we have Kp(I −Q)N(Ω) is a relative

compact set of Xk, QN(Ω) is a bounded set of Yk, so the operator N is L-
compact in Ω.

For the sake of convenience, we list the following assumption which will be
used by us in studying the existence of homoclince solutions to the Eq.(3) in
Section 3.

[H1] There exists constants α and β > 0 such that

|xf(x)| ≥ α|x|p and |f(x)| ≤ β|x|p−1, ∀x ∈ R

[H2] There exists constants m0 and m1 > 0 such that

|xg(t, x)| ≥ m0|x|p and |g(t, x)| ≤ m1|x|p−1, ∀(t, x) ∈ R2

[H3] e ∈ C(R,R) is a bounded function with e(t) ̸= 0 and

A := max{(
∫
R

|e(t)|
p

p−1 dt)
p−1
p ,

∫
R

|e(t)|2dt}+ sup
t∈R

|e(t)| < +∞

Remark 2.2. From (5), we can see that |ek(t)| ≤ sup
t∈R

|e(t)|. So if [H3] holds,

then for each k ∈ N , (

∫ kT

−kT

|e(t)|
p

p−1 dt)
p−1
p < A.

3. Main results

In order to study the existence of 2kT -periodic solutions to system (6), we
firstly study some properties of all possible 2kT -periodic solutions to the follow-
ing system:{

u′(t) = λϕ(v(t)) = λ
φq(v(t))√
1−φ2

q(v(t))

v′(t) = −λf(ϕ(v(t)))− λg(t, u(t− τ(t))) + λek(t), λ ∈ (0, 1]
(7)

where (uk, vk)
⊤ ∈ Zk ⊂ Xk. For each k ∈ N and all λ ∈ (0, 1], let ∆ represent

the set of all the 2kT -periodic solutions to the above system.
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Theorem 3.1. Assume that conditions [H1]-[H3] hold,

βm1

α ( 1
1−σ1

)−
1
p +m1 ∥ τ ∥0 (m1

α )
1

p−1

1− σ1
<

m0

1 + σ0

and there exists a positive constant d0 such that

(2T )−
1
2

√
C1 + T (2T )−

1
2C2 < 1

where

C1 := βdp−1
1 d0 +m1d

p−1
0 d1 ∥ τ ∥0 (

1

1− σ1
)

p−1
p +Ad0

C2 :=
m1d

p
2
0√

1− σ1
[(2T )−

1
p d0 + T (2T )−

1
p d1]

p−2
2 +A

d1 :=
(m1

α
(

1

1− σ1
)

p−1
p dp−1

0 +
A

α

) 1
p−1

then for each k ∈ N , if (u, v)⊤ ∈ ∆, there are positive constants ρ1, ρ2, ρ3 and
ρ4 which are independent of k and λ, such that

||u||0 ≤ ρ1, ||v||0 ≤ ρ2 < 1, ||u′||0 ≤ ρ3, ||v′||0 ≤ ρ4
Proof. For each k ∈ N , if (u, v)⊤ ∈ ∆, it must satisfy the system (7). Multi-
plying the second equation of (7) by u′(t) and integrating from −kT to kT , we
have

0 =

∫ kT

−kT

v′(t)u′(t)dt = −λ

∫ kT

−kT

f(u′(t))u′(t)dt− λ

∫ kT

−kT

g(t, u(t− τ(t)))u′(t)dt

+ λ

∫ kT

−kT

ek(t)u
′(t)dt

In view of [H1] and [H2] and by Hölder inequality, we get

α

∫ kT

−kT

|u′(t)|pdt ≤ m1

∫ kT

−kT

|u(t− τ(t))|p−1|u′(t)|dt+
∫ kT

−kT

|ek(t)||u′(t)|dt

≤ m1(

∫ kT

−kT

|u(t− τ(t))|pdt)
p−1
p (

∫ kT

−kT

|u′(t)|pdt)
1
p

+ (

∫ kT

−kT

|ek(t)|
p

p−1 dt)
p−1
p (

∫ kT

−kT

|u′(t)|pdt)
1
p (8)

Furthermore,∫ kT

−kT

|u(t− τ(t)|pdt =
∫ kT−τ(kT )

−kT−τ(−kT )

1

1− τ ′(µ(s))
|u(s)|pds

and by Lemma 2.4,∫ kT−τ(kT )

−kT−τ(−kT )

1

1− τ ′(µ(s))
|u(s)|pds =

∫ kT

−kT

1

1− τ ′(µ(s))
|u(s)|pds
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It follows from Remark 2.1 that

1

1 + σ0
∥ u ∥pp≤

∫ kT

−kT

1

1− τ ′(µ(s))
|u(s)|pds ≤ 1

1− σ1
∥ u ∥pp (9)

Substituting (9) into (8) and combining with Remark 2.2, we can obtain

α ∥ u′ ∥pp≤ m1(
1

1− σ1
)

p−1
p ∥ u ∥p−1

p ∥ u′ ∥p +A ∥ u′ ∥p

which yields

∥ u′ ∥p≤
(m1

α
(

1

1− σ1
)

p−1
p ∥ u ∥p−1

p +
A

α

) 1
p−1

(10)

Multiplying the second equation of (7) by u(t) and integrating from −kT to kT ,
we have∫ kT

−kT

v′(t)u(t)dt = −
∫ kT

−kT

v(t)u′(t)dt

= −λ

∫ kT

−kT

f(u′(t))u(t)dt

− λ

∫ kT

−kT

g(t, u(t− τ(t)))[u(t)− u(t− τ(t))]dt

− λ

∫ kT

−kT

g(t, u(t− τ(t)))u(t− τ(t))dt+ λ

∫ kT

−kT

ek(t)u(t)dt

From the equality above, we have

λ

∫ kT

−kT

v2√
1− v2

dt+ λ

∫ kT

−kT

g(t, u(t− τ(t)))u(t− τ(t))dt

= −λ

∫ kT

−kT

f(u′(t))u(t)dt

− λ

∫ kT

−kT

g(t, u(t− τ(t)))[u(t)− u(t− τ(t))]dt

+ λ

∫ kT

−kT

ek(t)u(t)dt

Since |v(t)|2√
1−v2(t)

≥ |v(t)|2 and in view of [H1], [H2] and Lemma 2.2, we can get∫ kT

−kT

|v(t)|2dt+m0

∫ kT

−kT

|u(t− τ(t))|pdt

≤
∫ kT

−kT

|f(u′(t))||u(t)|dt+
∫ kT

−kT

|g(t, u(t− τ(t)))||u(t)− u(t− τ(t))|dt

+

∫ kT

−kT

|ek(t)||u(t)|dt
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≤ β

∫ kT

−kT

|u′(t)|p−1|u(t)|dt+m1

∫ kT

−kT

|u(t− τ(t))|p−1|u(t)− u(t− τ(t))|dt

+

∫ kT

−kT

|ek(t)||u(t)|dt

≤ β(

∫ kT

−kT

|u′(t)|pdt)
p−1
p (

∫ kT

−kT

|u(t)|pdt)
1
p +m1 ∥ τ ∥0 (

∫ kT

−kT

|u(t− τ(t))|pdt)
p−1
p

(

∫ kT

−kT

|u′(t)|pdt)
1
p + (

∫ kT

−kT

|ek(t)|
p

p−1 dt)
p−1
p (

∫ kT

−kT

|u(t)|pdt)
1
p (11)

By applying (9) to (11), we have

∥ v ∥22 +
m0

1 + σ0
∥ u ∥pp ≤ β ∥ u′ ∥p−1

p ∥ u ∥p +m1 ∥ τ ∥0 (
1

1− σ1
)
p−1
p ∥ u ∥p−1

p ∥ u′ ∥p

+A ∥ u ∥p
From the inequality above, we can see that

∥ v ∥22≤ β ∥ u′ ∥p−1
p ∥ u ∥p +m1 ∥ τ ∥0 (

1

1− σ1
)

p−1
p ∥ u ∥p−1

p ∥ u′ ∥p +A ∥ u ∥p
(12)

and
m0

1 + σ0
∥ u ∥pp≤ β ∥ u′ ∥p−1

p ∥ u ∥p +m1 ∥ τ ∥0 (
1

1− σ1
)
p−1
p ∥ u ∥p−1

p ∥ u′ ∥p +A ∥ u ∥p
(13)

Substituting (10) into (13), we get

m0

1 + σ0
∥ u ∥pp ≤ β

(m1

α
(

1

1− σ1
)

p−1
p ∥ u ∥p−1

p +
A

α

)
∥ u ∥p +A ∥ u ∥p

+m1 ∥ τ ∥0 (
1

1− σ1
)

p−1
p ∥ u ∥p−1

p

(m1

α
(

1

1− σ1
)

p−1
p ∥ u ∥p−1

p +
A

α

) 1
p−1

Since
βm1
α ( 1

1−σ1
)
− 1

p +m1∥τ∥0(
m1
α )

1
p−1

1−σ1
< m0

1+σ0
, it is easy to see that there exists a

constant d0 such that
∥ u ∥p≤ d0 (14)

Substituting (14) into (10), we obtain

∥ u′ ∥p≤
(m1

α
(

1

1− σ1
)

p−1
p dp−1

0 +
A

α

) 1
p−1

:= d1 (15)

It follows from Lemma 2.2 that

|u(t)| ≤ (2T )−
1
µ (

∫ t+T

t−T

|u(s)|µds)
1
µ + T (2T )−

1
p (

∫ t+T

t−T

|u′(s)|pds)
1
p

≤ (2T )−
1
p (

∫ t+kT

t−kT

|u(s)|pds)
1
p + T (2T )−

1
p (

∫ t+kT

t−kT

|u′(s)|pds)
1
p

= (2T )−
1
p (

∫ kT

−kT

|u(s)|pds)
1
p + T (2T )−

1
p (

∫ kT

−kT

|u′(s)|pds)
1
p
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In view of (14) and (15), we have

|u(t)| ≤ (2T )−
1
p d0 + T (2T )−

1
p d1

:= ρ1

then we get

||u||0 = max
t∈[−kT,kT ]

|u(t)| ≤ ρ1 (16)

Clearly, ρ1 is independent of k and λ. Furthermore, substituting (14) and (15)
into (12), we can see that

∥ v ∥22 ≤ β ∥ u′ ∥p−1
p ∥ u ∥p +m1 ∥ τ ∥0 (

1

1− σ1
)

p−1
p ∥ u ∥p−1

p ∥ u′ ∥p +A ∥ u ∥p

≤ βdp−1
1 d0 +m1d

p−1
0 d1 ∥ τ ∥0 (

1

1− σ1
)

p−1
p +Ad0

:= C1 (17)

Multiplying the second equation of (7) by v′(t) and integrating from −kT to kT ,
we have∫ kT

−kT

|v′(t)|2dt = −λ

∫ kT

−kT

f(u′(t))v′(t)dt− λ

∫ kT

−kT

g(t, u(t− τ(t)))v′(t)dt

+ λ

∫ kT

−kT

ek(t)v
′(t)dt

= −λ

∫ kT

−kT

f(u′(t))d(v(t))− λ

∫ kT

−kT

g(t, u(t− τ(t)))v′(t)dt

+ λ

∫ kT

−kT

ek(t)v
′(t)dt (18)

From the first equation of (7), we can see that v(t) = φp

( u′(t)
λ√

1+(
u′(t)

λ )2

)
, thus

−λ

∫ kT

−kT

f(u′(t))d(v(t)) = −λ

∫ kT

−kT

f(u′(t))d(φp

( u′(t)
λ√

1 + (u
′(t)
λ )2

)
)

= −
∫ kT

−kT

f(u′(t))d(
∣∣∣ u′(t)

λ√
1 + (u

′(t)
λ )2

∣∣∣p−2

·
u′(t)
λ√

1 + (u
′(t)
λ )2

)

= 0 (19)

Substituting (19) into (18) and in view of [H2], we get

∥ v′ ∥22=
∫ kT

−kT

|v′(t)|2dt = −λ

∫ kT

−kT

g(t, u(t− τ(t)))v′(t)dt+ λ

∫ kT

−kT

ek(t)v
′(t)dt

≤ m1

∫ kT

−kT

|u(t− τ(t))|p−1|v′(t)|dt+
∫ kT

−kT

|ek(t)||v′(t)|dt
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≤ m1(

∫ kT

−kT

|u(t− τ(t))|2(p−1)dt)
1
2 (

∫ kT

−kT

|v′(t)|2dt) 1
2

+ (

∫ kT

−kT

|ek(t)|2dt)
1
2 (

∫ kT

−kT

|v′(t)|2dt) 1
2

≤ m1 ∥ u ∥
p−2
2

0 (

∫ kT

−kT

|u(t− τ(t))|pdt) 1
2 (

∫ kT

−kT

|v′(t)|2dt) 1
2

+ (

∫ kT

−kT

|ek(t)|2dt)
1
2 (

∫ kT

−kT

|v′(t)|2dt) 1
2

≤ m1 ∥ u ∥
p−2
2

0

1√
1− σ1

∥ u ∥
p
2
p ∥ v′ ∥2 +A ∥ v′ ∥2

It follows from (14) and (16) that

∥ v′ ∥2 ≤ m1d
p
2
0√

1− σ1
[(2T )−

1
p d0 + T (2T )−

1
p d1]

p−2
2 +A

:= C2 (20)

Applying the Lemma 2.2 again, we have

|v(t)| ≤ (2T )−
1
µ (

∫ t+T

t−T

|v(s)|µds)
1
µ + T (2T )−

1
p (

∫ t+T

t−T

|v′(s)|pds)
1
p

≤ (2T )−
1
2 (

∫ t+kT

t−kT

|v(s)|2ds) 1
2 + T (2T )−

1
2 (

∫ t+kT

t−kT

|v′(s)|2ds) 1
2

= (2T )−
1
2 (

∫ kT

−kT

|v(s)|2ds) 1
2 + T (2T )−

1
2 (

∫ kT

−kT

|v′(s)|2ds) 1
2 (21)

then combining (17) and (20) gives

|v(t)| ≤ (2T )−
1
2

√
C1 + T (2T )−

1
2C2 := ρ2

It follows from (2T )−
1
2

√
C1 + T (2T )−

1
2C2 < 1 that

||v||0 ≤ ρ2 < 1 (22)

Clearly, ρ2 is independent of k and λ.
It follows from (7) that

||u′||0 = max
t∈[−kT,kT ]

|u′(t)| = max
t∈[−kT,kT ]

λ
φq(v(t))√
1− φ2

q(v(t))

≤ ρq−1
2√

1− ρ2q−2
2

:= ρ3 (23)
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Clearly, ρ3 is independent of k and λ. Let define Fρ3 = max
|u′|≤ρ3

|f(u′(t))|, Gρ1 =

max
|u|≤ρ1

|g(t, u(t))|, then from the second equation of (7), we can obtain

||v′||0 = max
t∈[−kT,kT ]

|v′(t)| ≤ Fρ3 +Gρ1 +A := ρ4 (24)

and also ρ4 is independent of k and λ. Therefore, From (16), (22), (23) and
(24), we know ρ1, ρ2, ρ3 and ρ4 are constants independent of k and λ. Hence
the conclusion of Theorem 3.1 holds. �

Theorem 3.2. Assume that the conditions of Theorem 3.1 are satisfied . Then,
for each k ∈ N , system (7) has at least one 2kT -periodic solution (uk(t), vk(t))

⊤

in ∆ ⊂ Xk such that

||uk||0 ≤ ρ1, ||vk||0 ≤ ρ2 < 1, ||u′
k||0 ≤ ρ3, ||v′k||0 ≤ ρ4

where ρ1, ρ2, ρ3 and ρ4 are constants defined by Theorem 3.1.
Proof. In order to use Lemma 2.1, for each k ∈ N , we consider the following
system:{

u′(t) = λφ(v(t)) = λ
φq(v(t))√
1−φ2

q(v(t))

v′(t) = −λf(φ(v(t)))− λg(t, u(t− τ(t))) + λek(t), λ ∈ (0, 1]
(25)

where v(t) = φp

( u′(t)
λ√

1+(
u′(t)

λ )2

)
. Let Ω1 ⊂ Xk represent the set of all the 2kT -

periodic solutions of system (25). Since (0, 1) ⊂ (0, 1], then Ω1 ⊂ ∆, where ∆ is
defined by Theorem 3.1. If (u, v)⊤ ∈ Ω1, by using Theorem 3.1, we have

||u||0 ≤ ρ1, ||v||0 ≤ ρ2 < 1, ||u′||0 ≤ ρ3, ||v′||0 ≤ ρ4

Let Ω2 = {ω = (u, v)⊤ ∈ KerL,QNω = 0}, if (u, v)⊤ ∈ Ω2, then (u, v)⊤ =
(a1, a2)

⊤ ∈ R2(constant vector) and we can see that

∫ kT

−kT

φq(a2)√
1− φ2

q(a2)
dt = 0

∫ kT

−kT

−f(a′1)− g(t, a1) + ek(t)dt = 0

i.e., 
a2 = 0∫ kT

−kT

−f(a′1)− g(t, a1) + ek(t)dt = 0
(26)

Multiplying the second equation of (26) by a1 and combining with [H2], we have

2kTm0|a1|p ≤
∫ kT

−kT

|a1||ek(t)|dt ≤ (2kT )
1
p |a1|A

Thus

|a1| ≤ A
1

p−1 (2T )
−1
p m

1
1−p

0 := γ
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Now, if we define Ω = {ω = (u, v)⊤ ∈ Xk, ||u||0 < ρ1+γ, ||v||0 < 1+ρ2

2 < 1}, it is
easy to see that Ω1 ∪ Ω2 ⊂ Ω. So, condition (h1) and condition (h2) of Lemma
2.1 are satisfied. In order to verify the condition (h3) of Lemma 2.1, let

H(ω, µ) : (Ω ∩R2)× [0, 1] → R : H(ω, µ) = µω + (1− µ)JQN(ω)

where J : ImQ → KerL is a linear isomorphism, J(u, v) = (v, u)⊤. From
assumption [H1] and [H2], we have

ω⊤H(ω, µ) ̸= 0, ∀(ω, µ) ∈ ∂Ω ∩R2 × [0, 1]

Hence,

deg{JQN,Ω ∩R2, 0} = deg{H(ω, 0),Ω ∩R2, 0}
= deg{H(ω, 1),Ω ∩R2, 0}
̸= 0

So, the condition (h3) of Lemma 2.1 is satisfied. Therefore, by using Lemma
2.1, we see that Eq.(6) has a 2kT -periodic solution (uk, vk)

⊤ ∈ Ω. Obviously,
(uk, vk)

⊤ is a 2kT -periodic solution to Eq.(2) for the case of λ = 1, so (uk, vk)
⊤ ∈

∆. Thus, by using Theorem 3.1, we have

||uk||0 ≤ ρ1, ||vk||0 ≤ ρ2 < 1, ||u′
k||0 ≤ ρ3, ||v′k||0 ≤ ρ4

Hence the conclusion of Theorem 3.2 holds. �

Theorem 3.3. Suppose that the conditions in Theorem 3.1 hold, then Eq.(1)
has a nontrivial homoclinic solution.
Proof. From Theorem 3.2, we see that for each k ∈ N , there exists a 2kT -
periodic solution (uk, vk)

⊤ to Eq.(2) with

||uk||0 ≤ ρ1, ||vk||0 ≤ ρ2 < 1, ||u′
k||0 ≤ ρ3, ||v′k||0 ≤ ρ4 (27)

where ρ1, ρ2, ρ3, ρ4 are constants independent of k ∈ N . And uk(t) is a solution
of (2), so (

φp(
u′
k(t)√

1 + (u′
k(t))

2
)
)′

+ f(u′
k(t)) + g(t, uk(t− τ(t))) = ek(t) (28)

with vk(t) = φp

(
u′
k(t)√

1+(u′
k(t))

2

)
implies that vk(t) is continuously differentiable

for t ∈ R. Also, from (27), we have |vk|0 ≤ ρ2 < 1. It follows that u′
k(t) =

ϕ(vk(t)) =
φq(vk(t))√
1−φ2

q(vk(t))
is continuously differentiable for t ∈ R, i.e.,

u′′
k(t) =

φ′
q(vk(t))v

′
k(t)

(1− φ2
q(vk(t)))

3
2

By using (27) again and combining with φq(s) = |s|q−2s for s ̸= 0, then we have

||u′′
k ||0 ≤ (q − 1)ρq−2

2 ρ24√
1− ρq−1

2

:= ρ5
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Clearly, ρ5 is a constant independent of k ∈ N . From Lemma 2.5, we can see
that there is a function u0 ∈ C1(R,Rn) such that for each interval [a, b] ⊂ R,
there is a subsequence {ukj} of {uN}k∈N with u′

kj
(t) → u′

0(t) uniformly on [a, b].

In the following, we show that u0(t) is just a homoclinic solution to Eq.(4).
For all a, b ∈ R with a < b, there must be a positive integer j such that for
j > j0, [−kjT, kjT − ε0] ⊂ [a − α, b + α]. So, for j > j0, from (3) and (26) we
see that(

φp(
u′
kj√

1 + (u′
kj
)2
)
)′

+ f(u′
kj
(t)) + g(t, ukj (t− τ(t))) = e(t), t ∈ [a, b] (29)

Then from (29) we can have(
φp(

u′
kj√

1 + (u′
kj
)2
)
)′

= −f(u′
kj
(t))− g(t, ukj (t− τ(t))) + e(t)

→ −f(u′
0(t)) + g(t, u0(t− τ(t))) + e(t) uniformly on [a, b].

Since
(
φp(

u′
kj√

1+(u′
kj

)2
)
)′

→
(
φp(

u′
0√

1+(u′
0)

2
)
)′
uniformly for t ∈ [a, b] and

(
φp(

u′
kj√

1+(u′
kj

)2
)
)′

is continuous differentiable for t ∈ [a, b], we can have(
φp(

u′
0√

1 + (u′
0)

2
)
)′

= −f(u′
0(t)) + g(t, u0(t− τ(t))) + e(t), t ∈ [a, b]

Considering that a, b are two arbitrary constants with a < b, it is easy to see
that u0(t), t ∈ R is a solution to system (1).
Now, we prove u0(t) → 0 and u′(t) → 0 as |t| → ∞.
Since∫ +∞

−∞
(|u0(t)|p + |u′

0(t)|p)dt = lim
i→+∞

∫ iT

−iT

(|u0(t)|p + |u′
0(t)|p)dt

= lim
i→+∞

lim
j→+∞

∫ iT

−iT

(|ukj (t)|p + |u′
kj
(t)|p)dt

Clearly, for every i ∈ N if kj > i, then by (14) and (15), we have∫ iT

−iT

(|ukj (t)|p + |u′
kj
(t)|p)dt ≤

∫ kjT

−kjT

(|ukj (t)|p + |u′
kj
(t)|p)dt ≤ dp0 + dp1

Let i → +∞, j → +∞, we have∫ +∞

−∞
(|u0(t)|p + |u′

0(t)|p)dt ≤ dp0 + dp1 (30)

and then ∫
|t|≥r

(|u0(t)|p + |u′
0(t)|p)dt → 0 (31)
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as r → +∞. So, by using Lemma 2.3 as |t| → +∞, we obtain

|u0(t)| ≤ (2T )−
1
p (

∫ t+T

t−T

|u(s)|pds)
1
p + T (2T )−

1
p (

∫ t+T

t−T

|u′(s)|pds)
1
p

≤ [(2T )−
1
p + T (2T )−

1
p ](

∫ t+T

t−T

|u(s)|pds+
∫ t+T

t−T

|u′(s)|pds)
1
p

→ 0.

Finally, we will proof

u′
0(t) → 0, |t| → ∞. (32)

From (27), we know

|u0(t)| ≤ ρ1, |u′
0(t)| ≤ ρ3, ∀t ∈ R

Then, we have

|
(
φp(

u′
0√

1 + (u′
0)

2
)
)′
| ≤ |f(u′

0(t))|+ |g(t, u0(t− τ(t)))|+ |e(t)|

≤ sup
u∈[−ρ3,ρ3]

|f(u′(t))|+ sup
u∈[−ρ1,ρ1]

|g(t, u(t))|] +A

:= M1, ∀t ∈ R

If (32) does not hold, then there exist ε1 ∈ (0, 1
4 ) and a sequence {tk} such that

|t1| < |t2| < |t3| < · · · < |tk|+ 1 < |tk+1|, k = 1, 2, 3, · · ·

and

|u′
0(tk)| ≥

2ε1√
1− |2ε1|2

, k = 1, 2, 3, · · ·

Then, for t ∈ [tk, tk + ε1
1+M1

], we can have

|u′
0(t)| ≥ | u′

0(t)√
1 + |u′

0(t)|2
| = | u′

0(tk)√
1 + |u′

0(tk)|2
+

∫ t

tk

(
u′
0(s)√

1 + |u′
0(s)|2

)′ds|

≥ | u′
0(tk)√

1 + |u′
0(tk)|2

| −
∫ t

tk

|( u′
0(s)√

1 + |u′
0(s)|2

)′|ds ≥ ε1

It follows that ∫ +∞

−∞
|u′

0(t)|pdt ≥ Σ∞
k=1

∫ tk+
ε1

1+M1

tk

|u′
0(t)|pdt = ∞

which contradicts (30), thus (32) holds. Clearly, u0(t) ̸= 0, otherwise e(t) ≡
0, which contradicts assumption (H3). Hence the conclusion of Theorem 3.3
holds. �
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