• Title/Summary/Keyword: derivations and generalized derivations

Search Result 93, Processing Time 0.02 seconds

HOMOMORPHISMS BETWEEN C*-ALGEBRAS ASSOCIATED WITH THE TRIF FUNCTIONAL EQUATION AND LINEAR DERIVATIONS ON C*-ALGEBRAS

  • Park, Chun-Gil;Hou, Jin-Chuan
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.461-477
    • /
    • 2004
  • It is shown that every almost linear mapping h : A\longrightarrowB of a unital $C^{*}$ -algebra A to a unital $C^{*}$ -algebra B is a homomorphism under some condition on multiplication, and that every almost linear continuous mapping h : A\longrightarrowB of a unital $C^{*}$ -algebra A of real rank zero to a unital $C^{*}$ -algebra B is a homomorphism under some condition on multiplication. Furthermore, we are going to prove the generalized Hyers-Ulam-Rassias stability of *-homomorphisms between unital $C^{*}$ -algebras, and of C-linear *-derivations on unital $C^{*}$ -algebras./ -algebras.

STABILITY OF DERIVATIONS ON PROPER LIE CQ*-ALGEBRAS

  • Najati, Abbas;Eskandani, G. Zamani
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.5-16
    • /
    • 2009
  • In this paper, we obtain the general solution and the generalized Hyers-Ulam-Rassias stability for a following functional equation $$\sum\limits_{i=1}^mf(x_i+\frac{1}{m}\sum\limits_{{i=1\atop j{\neq}i}\.}^mx_j)+f(\frac{1}{m}\sum\limits_{i=1}^mx_i)=2f(\sum\limits_{i=1}^mx_i)$$ for a fixed positive integer m with $m\;{\geq}\;2$. This is applied to investigate derivations and their stability on proper Lie $CQ^*$-algebras. The concept of Hyers-Ulam-Rassias stability originated from the Th. M. Rassias stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.

DERIVATIONS OF THE ODD CONTACT LIE ALGEBRAS IN PRIME CHARACTERISTIC

  • Cao, Yan;Sun, Xiumei;Yuan, Jixia
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.591-605
    • /
    • 2013
  • The underlying field is of characteristic $p$ > 2. In this paper, we first use the method of computing the homogeneous derivations to determine the first cohomology of the so-called odd contact Lie algebra with coefficients in the even part of the generalized Witt Lie superalgebra. In particular, we give a generating set for the Lie algebra under consideration. Finally, as an application, the derivation algebra and outer derivation algebra of the Lie algebra are completely determined.

Correction to "On prime near-rings with generalized (σ, τ)- derivations, Kyungpook Math. J., 45(2005), 249-254"

  • Al Hwaeer, Hassan J.;Albkwre, Gbrel;Turgay, Neset Deniz
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.415-421
    • /
    • 2020
  • In the proof of Theorem 3 on p.253 in [4], both right and left distributivity are assumed simultaneously which makes the proof invalid. We give a corrected proof for this theorem by introducing an extension of Lemma 2.2 in [2].

STABILITY OF THE JENSEN TYPE FUNCTIONAL EQUATION IN BANACH ALGEBRAS: A FIXED POINT APPROACH

  • Park, Choonkil;Park, Won Gil;Lee, Jung Rye;Rassias, Themistocles M.
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.149-161
    • /
    • 2011
  • Using fixed point methods, we prove the generalized Hyers-Ulam stability of homomorphisms in Banach algebras and of derivations on Banach algebras for the following Jensen type functional equation: $$f({\frac{x+y}{2}})+f({\frac{x-y}{2}})=f(x)$$.

ON GENERALIZED JORDAN DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS

  • Ashraf, Mohammad;Jabeen, Aisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.733-744
    • /
    • 2020
  • Let 𝕽 be a commutative ring with unity, A and B be 𝕽-algebras, M be a (A, B)-bimodule and N be a (B, A)-bimodule. The 𝕽-algebra 𝕾 = 𝕾(A, M, N, B) is a generalized matrix algebra defined by the Morita context (A, B, M, N, 𝝃MN, ΩNM). In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.

SOME SYMMETRY IDENTITIES FOR GENERALIZED TWISTED BERNOULLI POLYNOMIALS TWISTED BY UNRAMIFIED ROOTS OF UNITY

  • Kim, Dae San
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.603-618
    • /
    • 2015
  • We derive three identities of symmetry in two variables and eight in three variables related to generalized twisted Bernoulli polynomials and generalized twisted power sums, both of which are twisted by unramified roots of unity. The case of ramified roots of unity was treated previously. The derivations of identities are based on the p-adic integral expression, with respect to a measure introduced by Koblitz, of the generating function for the generalized twisted Bernoulli polynomials and the quotient of p-adic integrals that can be expressed as the exponential generating function for the generalized twisted power sums.

COMMUTATIVITY OF MULTIPLICATIVE b-GENERALIZED DERIVATIONS OF PRIME RINGS

  • Muzibur Rahman Mozumder;Wasim Ahmed;Mohd Arif Raza;Adnan Abbasi
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.95-107
    • /
    • 2023
  • Consider ℛ to be an associative prime ring and 𝒦 to be a nonzero dense ideal of ℛ. A mapping (need not be additive) ℱ : ℛ → 𝒬mr associated with derivation d : ℛ → ℛ is called a multiplicative b-generalized derivation if ℱ(αδ) = ℱ(α)δ +bαd(δ) holds for all α, δ ∈ ℛ and for any fixed (0 ≠)b ∈ 𝒬s ⊆ 𝒬mr. In this manuscript, we study the commutativity of prime rings when the map b-generalized derivation satisfies the strong commutativity preserving condition and moreover, we investigate the commutativity of prime rings that admit multiplicative b-generalized derivation, which improves many results in the literature.

b-GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS IN PRIME RINGS

  • Dhara, Basudeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.573-586
    • /
    • 2018
  • Let R be a noncommutative prime ring of characteristic different from 2, Q be its maximal right ring of quotients and C be its extended centroid. Suppose that $f(x_1,{\ldots},x_n)$ be a noncentral multilinear polynomial over $C,b{\in}Q,F$ a b-generalized derivation of R and d is a nonzero derivation of R such that d([F(f(r)), f(r)]) = 0 for all $r=(r_1,{\ldots},r_n){\in}R^n$. Then one of the following holds: (1) there exists ${\lambda}{\in}C$ such that $F(x)={\lambda}x$ for all $x{\in}R$; (2) there exist ${\lambda}{\in}C$ and $p{\in}Q$ such that $F(x)={\lambda}x+px+xp$ for all $x{\in}R$ with $f(x_1,{\ldots},x_n)^2$ is central valued in R.

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.