DOI QR코드

DOI QR Code

b-GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS IN PRIME RINGS

  • Received : 2017.02.19
  • Accepted : 2017.08.18
  • Published : 2018.03.31

Abstract

Let R be a noncommutative prime ring of characteristic different from 2, Q be its maximal right ring of quotients and C be its extended centroid. Suppose that $f(x_1,{\ldots},x_n)$ be a noncentral multilinear polynomial over $C,b{\in}Q,F$ a b-generalized derivation of R and d is a nonzero derivation of R such that d([F(f(r)), f(r)]) = 0 for all $r=(r_1,{\ldots},r_n){\in}R^n$. Then one of the following holds: (1) there exists ${\lambda}{\in}C$ such that $F(x)={\lambda}x$ for all $x{\in}R$; (2) there exist ${\lambda}{\in}C$ and $p{\in}Q$ such that $F(x)={\lambda}x+px+xp$ for all $x{\in}R$ with $f(x_1,{\ldots},x_n)^2$ is central valued in R.

Keywords

Acknowledgement

Supported by : Science and Engineering Research Board (SERB)

References

  1. K. I. Beidar, W. S. Martimdale III, and A. V. Mikhalev, Rings with Generalized Identities, Pure Appl. Math., 196, Marcel Dekker, New York, 1996.
  2. C. L. Chuang, GPIs having coeffcients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723-728. https://doi.org/10.1090/S0002-9939-1988-0947646-4
  3. C. L. Chuang and T. K. Lee, Derivations modulo elementary operators, J. Algebra 338 (2011), 56-70. https://doi.org/10.1016/j.jalgebra.2011.05.009
  4. V. De Filippis, An Engel condition with generalized derivations on multilinear polynomials, Israel J. Math. 162 (2007), 93-108. https://doi.org/10.1007/s11856-007-0090-y
  5. V. De Filippis and O. M. Di Vincenzo, Posner's second theorem, multilinear polynomials and vanishing derivations, J. Aust. Math. Soc. 76 (2004), no. 3, 357-368. https://doi.org/10.1017/S1446788700009915
  6. V. De Filippis and O. M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra 40 (2012), no. 6, 1918-1932. https://doi.org/10.1080/00927872.2011.553859
  7. C. Demir and N. Argac, Prime rings with generalized derivations on right ideals, Algebra Colloq. 18 (2011), no. 1, 987-998. https://doi.org/10.1142/S1005386711000861
  8. B. Dhara and N. Argac, Generalized derivations acting on multilinear polynomials in prime rings and Banach algebras, Commun. Math. Stat. 4 (2016), no. 1, 39-54. https://doi.org/10.1007/s40304-015-0073-y
  9. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
  10. V. K. Kharchenko, Differential identity of prime rings, Algebra i Logika 17 (1978), no. 2, 220-238, 242-243.
  11. M. T. Kosan and T. K. Lee, b-Generalized derivations having nilpotent values, J. Aust. Math. Soc. 96 (2014), no. 3, 326-337. https://doi.org/10.1017/S1446788713000670
  12. C. Lanski, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134 (1988), no. 2, 275-297. https://doi.org/10.2140/pjm.1988.134.275
  13. P. H. Lee and T. K. Lee, Derivations with Engel conditions on multilinear polynomials, Proc. Amer. Math. Soc. 124 (1996), no. 9, 2625-2629. https://doi.org/10.1090/S0002-9939-96-03351-5
  14. T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27-38.
  15. T. K. Lee, Additive maps having a generalized derivation expansion, J. Algebra Appl. 14 (2015), no. 4, 1550048, 13 pp.
  16. U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc. 202 (1975), 97-103. https://doi.org/10.1090/S0002-9947-1975-0354764-6
  17. C.-K. Liu, An Engel condition with b-generalized derivations, Linear Multilinear Algebra 65 (2017), no. 2, 300-312. https://doi.org/10.1080/03081087.2016.1183560
  18. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584. https://doi.org/10.1016/0021-8693(69)90029-5
  19. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.1090/S0002-9939-1957-0095863-0
  20. T. L. Wong, Derivations with power central values on multilinear polynomials, Algebra Colloq. 3 (1996), no. 4, 369-478.