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STABILITY OF DERIVATIONS ON
PROPER LIE CQ*-ALGEBRAS

ABBAS NAJATI AND G. ZAMANI ESKANDANI

ABSTRACT. In this paper, we obtain the general solution and the gener-
alized Hyers—-Ulam—Rassias stability for a following functional equation

POVCTED SENEFIE) DENELIIO DEN
=1 j=1 i=1 i=1
Jj#i

for a fixed positive integer m with m > 2. This is applied to investigate
derivations and their stability on proper Lie CQ*-algebras. The concept
of Hyers—Ulam—Rassias stability originated from the Th. M. Rassias sta-
bility theorem that appeared in his paper: On the stability of the linear
mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

1. Introduction and preliminaries

Ulam [26] gave a talk before the Mathematics Club of the University of
Wisconsin in which he discussed a number of unsolved problems. Among these
was the following question concerning the stability of homomorphisms.

Let {G1,*) be a group and let (Ga,0,d) be a metric group with the metric
d(-,-). Given e > 0, does there exist a 6(¢) > 0 such that if a mapping f : Gy —
G4 satisfies the inequality

d(f(xxy), f(x) o fy)) <8
for all x,y € G1, then there is a homomorphism T : G; — G4 with

d(f(@), T(2)) < e
for all x € G17

If the answer is affirmative, we say that the equation of homomorphism
flzy) = f(z)f(y) is stable. The concept of stability for a functional equation
arises when we replace the functional equation by an inequality which acts
as a perturbation of the equation. Thus the stability question of functional
equations is that how do the solutions of the inequality differ from those of the
given functional equation?
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Hyers [10] considered the case of approximately additive mappings f : E —
E’, where E and E' are Banach spaces and [ satisfies Hyers inequality

If(x+y) — fz) - fly)l < e

for all z,y € E. It was shown that the limit
. f(2"x)
Liz) = Jlim, =5
exists for all z € E and that L : E — E’ is the unique additive mapping
satisfying
If(z) — L{z)|| < e
Hyers’ theorem was generalized by Aoki [3] for additive mappings and by
Th. M. Rassias [24] for linear mappings by considering an unbounded Cauchy
difference. The paper of Th. M. Rassias has provided a lot of influence in the
development of what we now call Hyers—~Ulam—Rassias stability of functional
equations. In 1994, a generalization of Th. M. Rassias’ theorem was obtained
by Gévruta [9]. During the last two decades, a number of papers and research
monographs have been published on various generalizations and applications of
the generalized Hyers-Ulam stability to a number of functional equations and
mappings (see [12], [18]-[23]). We also refer the readers to the books [1], [8],
[11], [13] and [25].
We recall some basic facts concerning quasi *-algebras.

Definition 1.1. Let A be a linear space and Ag be a *-algebra contained in A
as a subspace. We say that A is a quasi *-algebra over Ap if

(i) the right and left multiplications of an element of A and an element of
Ap are always defined and linear;
(i) z1(z2a) = (z122)a, (az1)z2 = a(z122) and z1(azz) = (z1a)z2 for all
r1,%2 € Ap and all a € A;
(iii) an involution *, which extends the involution of Ao, is defined in A
with the property (ab)* = b*a*, whenever the multiplication is defined.

Quasi x-algebras [14, 15] arise in natural way as completions of locally convex
x-algebras whose multiplication is not jointly continuous; in this case one has
to deal with topological quasi *-algebras.

A quasi x-algebra (A, Ap) is called topological if a locally convex topology 7
on A is given such that:

(i) the involution a — a* is continuous for each a € A,
(ii) the mappings a — ab and a — ba are continuous for each a € A and
be A,
(iii) Ao is dense in A[7].
Throughout this paper, we suppose that a locally convex quasi *-algebra
(A, Ag) is complete. For an overview on partial *-algebra and related topics we
refer to [2].
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In a series of papers [4], {5], [6], [7] many authors have considered a special
class of quasi *-algebras, called proper CQ*-algebras, which arise as comple-
tions of C*-algebras. They can be introduced in the following way:

Definition 1.2. Let A be a Banach module over the C -algebra A, with
involution * and C*-norm | - ||¢ such that Ay C A. We say that (4,A4p) is a
proper CQ*-algebra if
(i) Ag is dense in A with respect to its norm ||.|;
(1) (ab)* =b*a* whenever the multiplication is defined;
(iii) flyllo = max{supqe 4 o<1 llay]l, SuPae A, jaj<1 lyall } for all y € Ao.

A proper CQ*-algebra (A, Ag) is said to have a unit e if there exists an
element e € Ag such that ae = ea = a for all @ € A. In this paper we will always
assume that the proper CQ*-algebra under consideration have an identity.

Definition 1.3. A proper CQ*-algebra (A4, Ap), endowed with a bilinear mul-
tiplication [,] : (A x Ag) U (Ag x A) — A, called the bracket, which satisfies
two siraple properties:

(1) [w1,22]) = —[w2,21] for all (z1,72) € (A x 4o) U (4o x A);

(i) [x1, {2, 23] = [[z1, 22], T3] + {21, [22, 23]] for all 21,22, 23 € Ag
is called a proper Lie CQ*-algebra.
Definition 1.4. Let (A4, Ap) be a proper Lie CQ*-algebras. A C-linear map-
ping 6 : Ap — A is called a Lie derivation if

8([z, z]) = [0(2), ] + [2, ()]
for all z, z € Ap (see [21]).
Throughout this paper, we assume that m is a fixed positive integer with

m > 2.

In this paper, we obtain the general solution and the generalized Hyers—
Ulam-Rassias stability for the following functional equation

m

m m m
1 1
O Y S > om) (S m) =27 (),
i=1 i=1 mia =1
i
where m is a fixed positive integer with m > 2. This is applied to investigate
derivations and their stability on proper Lie CQ*-algebras.

2. Solution of functional equation (1.1)

Throughout this section, let both X and Y be real vector spaces. We here
present the general solution of (1.1).

Theorem 2.1. A mapping f : X — Y satisfies (1.1) if and only if the mapping
f: X =Y is additive.
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Proof. We first assume that the mapping f : X — Y satisfies (1.1). Setting

zy =mz and 2 = --- = Ly, = 0 in (1.1), we get

(2.1) f(mz) = mf(z)

for all z € X. Replacing 1 = z and 22 = - -+ = &, = ;%7 in (1.1), and using
(2.1), we get

(2.2) fmz+y)+(m-1f(@+2y) = (2m - 1)f(z +y)

for all z,y € X. Setting 2, =z, 2o =yand 23 =--+- = 2, = 0in (1.1) and
using (2.1), we get

(2.3) fmz+y)+ fl@+my) = (m+1)f(z+y)

for all z,y € X. Therefore, it follows from (2.2) and (2.3) that

(2.4) f@+my)—(m-1)fz+2y) = (2-m)f(z+y)

for all z,y € X. Replacing = and y by ¥ and z in (2.2), respectively, we get
(2.5) fl@+my) + (m—1)f2z+y) = (2m-1)f(z+y)

for all z,y € X. By using (2.4) and (2.5), we get

(2.6) 3fx+y)=flz+2y)+ f(2x +y)

for all z,y € X. Setting y = 0 in (2.6), we get

(2.7) £(22) = 2f(a)

for all z € X. Replacing y by z in (2.6) and using (2.7), we get

(2.8) fB3z) =3f(=)

for all x € X. Replacing « and y by 2%-¥ =< and 43"—“’« in (2.6), respectively, and
using (2.8), we get
fle+y)=7f(=z)+fy)
for all z,y € X. So the mapping f: X — Y is additive.
Conversely, let the mapping f : X — Y be additive. By a simple com-
putation, one can show that the mapping f satisfies the functional equa-
tion (1.1). O

3. Stability of derivation on proper Lie CQ*-algebras

Throughout this section, assume that (A, Ao) is a proper Lie CQ*-algebra
with C*-norm || - || 4, and norm || - || 4. For convenience, we use the following
abbreviation for a given mapping f Ay — A

Duf(z,. ., Tm) —Zf B, + — Zua@)-l-f Z,uxz —2uf Z )
i=1

1—1 z=1
J#i

for all 1,...,%m € Ag, where p € T :={p e C: |u| = 1}.
We will use the following lemma:



STABILITY OF DERIVATIONS 9

Lemma 3.1 ([22]). Let f: Ay — A be an additive mapping such that f(uz) =
uf(z) for all x € Ay and all p € T'. Then the mapping f is C-linear.

Theorem 3.2. Letp: Ag x Ag x --- X Ag — [0,00) and ¢ : Ag X Ag — [0, 00)

m—times

be mappings such that

(3.1) lim Lgp(m":z:l, coo,mmzy) =0,
n—oo MM

. 1

(3.2) lim —y¥(m™zy,z2) =0,
n—oo M
. 1 ;

(3.3) ©;(x) ::Zﬁw(o,...,w,...,0)<oo

i=1 jth
for some 1 <j<m and all z,z1,...,2m € Ag. Suppose that f: Ay — Aisa
mapping such that
(3.4) 1Duf(z1,. .y zm)lla < o1, ..o Tm),
(3.5) £ ([z1, 22]) = [f (1), m2] — [21, fi(@2)]|| , < (21, 22)
forallzy,...,zm € Ay and all u € TY. Then there exists a unique Lie derivation
6: Ay — A such that
(3.6) 1f(z) — 6(z)l|a < ¥;(x)

for all x € Ap.

Proof. Letting 4 =1, z; = mz and z; = 0 for all 1 < i < m with i # j in
(3.4), we get
(3.7 [ f(mz) —mf(z)||a <(0,...,mz,...,0)

jth
for all z € Ap. Replacing x by m"z in (3.7) and dividing both sides of (3.7) by
m"tl, we get

1 n+1 1 n 1 n+1
jth

for all x € Ag and all non-negative integers n. Hence
(3.9)

s~ st = St - et

n+1 1

g_z W@(O,...,mix,...,O)
i=k+1 jth
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for all z € Ay and all non-negative integers n and k with n > k. Therefore,
we conclude from (3.3) and (3.9) that the sequence {3 f(m"z)} is a Cauchy
sequence in A for all z € Ag. Since A is complete, the sequence {1 f(m™z)}
converges in A for all z € Ay. So one can define the mapping d : Ag — A by

(3.10) 5(2) = lim % f(m™a)

for all x € Ag. Letting £ = 0 and passing the limit n — co in (3.9), we get
(3.6). Now, we show that d is a C-linear mapping. It follows from (3.1), (3.4)
and (3.10) that

) 1
I1D16(@1, -, @m)lla = Jim —2||Dif(m"er, ..., m"em)| 4
1 .
< lim —p(m"z1,...,m"Ty) =0

n—oo M

for all x1,...,z, € Ag. So the mapping & satisfies (1.1‘). By Lemma 2.1, the
mapping J is additive.
Letting z; = mz and z; =0 for all 1 < i < m with ¢ # j in (3.4), we get

(3.11) If (umz) + mf(uz) - 2uf(mz)|a < ¢(0,..., mz,...,0)

for all z € Ag. Replacing z by m"z in (3.11) and dividing both sides of (3.11)
by m™+!, we get

1 1 2
+1 +1
(3.12) e o 2a) 4 2 fumna) = iz )
. 1
< Wso(O,...,m”“x,...,O)
jth

for all x € Ap and all non-negative integers n. Passing the limit n — oo in
(3.12) and using (3.1) and (3.10), we get

(uz) = pé(x)

for all u € T! and for all z € Ag. So by Lemma 3.1, we infer that the mapping
6 : Ag — A is C-linear. To prove the uniqueness of 4, let & : Ap — A be
another additive mapping satisfying (3.6). It follows from (3.6) and (3.10) that

6(z) — &' ()] 4 = nll)ngo -ni—n“f(mnx) — 5'(mnx)||4

1
< i — A n —
_nlgn —p;(m"z) =0

forallz € Ag. So d =¢'.
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It follows from (3.2), (3.5) and (3.10) that
[6([@1, @2]) — [6(21), z2] — [21,6(22)]|| ,

Jim | fm" o, za]) — [Fm" 1), 2] = [, Sz

f

. 1
S Ve 72) =0

for all 21,25 € Ay. So

6([z1, 22]) = [6(21), x2] + [21, 6(22)]

for all z1,25 € Ag. Hence the mapping § : Ay — A is a unique Lie derivation
satisfying (3.6). O

Remark 3.3. Theorem 3.2 holds if we replace the condition (3.2) by one of the
following conditions

(1) hmn_,oo #w(a:l,m":sg) = 0,

(i) limp—oo =5 (M z1, M"22) = 0
for all 21, x5 € Ap.

Corollary 3.4. Let 6,a1,00,s1,59,{6;}, and {r;}", be non-negative real
numbers such that 0 < s; < 1 for some j = 1,2 (or 0 < 81,82 < 2), and
0<r; <1 forall1 <1 < m. Suppose that f : Ag — A is a mapping such that

||Dlif(x1? Ve 71:7774)”14 < 6+ Zgi”Ii“:&im

i=1
1f([z1, 22]) = [f (1), @2] = [0, F(@2)]lla < 6 + en il + azllzal 3
forall zy,... 2, € Ag and all u € T'. Then there exists a unique Lie deriva-
tion § : Ag — A such that
- <
1(@) = 5()lla < —" +(x)
for all x € Ag, where
. f;m™ .
1@) = min { =Ty ).

1<i<m “m — m"i

Remark 3.5. If 6 = 6; = 0 in Corollary 3.4 for some 1 < i < m, the mapping
d: Ayg — A is a Lie derivation.

Theorem 3.6. Let ® tAp X Ag x -~ xég—> [0,00) and W : Agx Ag — [0, 00)

m-—times
be mappings such that
. Ty T
(e ) = O

(3.13) lim m"\Il(%,a@) —0,

n—oo
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%) =Y m'B(0,..., —,...,0) < oo
=0 N~
jth

forsomel<j<mandalzx,...,0m € Ao. Suppose that f: Ag — A isa
mapping such that

WDuf(z1,- s zm)lla < Y21, -, Tm),
£z, 22]) — [f(®1), 22] = [m1, Fr(@2)]|| , < ¥(21,22)

for all z1,...,xm € Ag and all 4 € T'. Then there exists a unique Lie deriva-
tion 6 : Ag — A such that
(3.14) () — é(z)lla < ®;(z)

for all x € Ay.

Proof. Similarly to the proof of Theorem 3.2, we have
(315) ||f(mx) '—mf(x)”A < @(0,,‘7”3}',,0)
jth
for all z € Ag. Replacing x by % in (3.15) and multiplying both sides of
(3.15) to m™, we get

| £ () = ()|

for all z € Ay and all non-negative integers n. Hence

) = 1 ) =2

..,0)

x
n
ASm (I)(O’”.’W,
~
jth

mi+lf(

mirl) B mzf(%) A

(3.16) n z
< t —_— ...
_Zm@(o,...,mi, ,0)

i=k N~

jth

for all # € Ap and all non-negative integers n and k with n > k. Therefore the
sequence {m" f(x/m™)} is a Cauchy sequence in A for all z € Ay. Since A is
complete, the sequence {m" f(z/m™)} converges in A for all z € Ay. So one
can define the mapping 6 : Ay — A by

i npe(t
§(z) := lm m f(m")
for all z € Ag. Letting £ = 0 and passing the limit n — oo in (3.16), we get

(3.14).
The rest of the proof is similar to the proof of Theorem 3.2. O

Remark 3.7. Theorem 3.6 holds if we replace the condition (3.13) by one of
the following conditions

(i) limp 0o m™¥(z1, 2Z) =0,
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(i) lmp oo m?™W(EL, £2) =0
for all z1,z2 € Ayp.
Corollary 3.8. Let ay, a9, 51,52,{0;}7%, and {r;}>, be non-negative real num-

bers such that s1,82 > 2 andr; > 1 for all 1 < i < m. Suppose that f : Ag — A
is @ mapping such that

1D f(@1s- m)lla < Zeinmz-u’xo,

I/ ([, za]) = [f (1), w2] = w1, f(@2)]lla < enllzally, + czllellZ,

for all z1,...,2, € Ag and all u € T'. Then there exists a unique Lie deriva-
tion 6 : Ag — A such that

1f(z) = 6(2)]la < T(z)

for all x € Ag, where

I'(z) ;= min {

1<i<m

|I %, }

Remark 3.9. If 6, = 0 in Corollary 3.8 for some 1 < i < m, the mapping
6 : Ag — A is a Lie derivation.

m’f'z —

Lemma 3.10. Let X,Y be real vector spaces and k € R\ {£1}. Suppose that
f: X =Y is a mapping such that

(3.17) flkz+y)+ flz+ky)=(k+1)f(z+y)
for all z,y € X, then the mapping f : X — Y is additive.

Proof. Replacing z and y by ’Zﬁ:? and %% in (3.17), respectively, we get

r+y
(3.18) f@)+ fly)=(k+1)f (k+1)
for all z,y € X. Replacing z by (k + 1)z and letting ¥y = 0 in (3.18), we get
(3.19) F{(k+1Dz) = (k+ 1) f(x)

for all x € X. Using (3.18) and (3.19), we get
fz+y) = flz)+ fy)
for all z,y € X. So the mapping f : X — Y is additive. ]

Theorem 3.11. Let 4,8, 1,52 and {r;};,cs be non-negative real numbers such
that s; # 1 for some i =1,2 and r; > 0 for all j € J, where J is a non-empty

subset of {1,...,m} and m > 3. Suppose that f : Ay — A is a mapping such
that

(3.20) IDuf (1, wm)lla < Olljegllz; 1%,

(3.21) 1F([1, z2]) = [£ (1), w2] = [w1, f(22) 4 < Sllzall5 Iz,
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for all z1,...,2m € Ao and all p € T' (by letting || - |%, = 1). Then the
mapping f : Ao — A is a Lie derivation.

Proof. We first show that f is C-linear. We have two cases:

(i) |J| =m.

Letting 1 = -+ = z,, = 0 in (3.20), we get that f(0) = 0. Letting p = 1,
z1 =mz and 23 = -+ = z,,, = 0 in (3.20), we get
(3.22) F(ma) = mf(z)
forall z € Ao. Letting pu =1, 21 =2, 22 =y and z3 = --- = 2, = 0 in (3.20)
and using (3.22), we get
(3.23) fmz+y)+ flz+my)=(m+1)f(z+y)
for all z,y € Ap. So by Lemma 3.10, the mapping f is additive. Letting
z1=mz and T3 = -+ =, = 0 in (3.20) and using (3.22), we get

fuz) = pf(z)
for all z € Ag and all y € T'. Hence it follows from Lemma 3.1 that the
mapping f : Ag — A is C-linear.

(@o<|J)<m.

Let jo € J, 40 ¢ J and ko # i, jo for some 1 < ig, jo, ko < m. Letting p = 1,
Zi, = mz and x; = 0 in (3.20) for all j € J, we get (3.22). Letting z;, = z,
Zk, =y and z; = 0 in (3.20) for all j € J\ {ko} and using (3.22), we get (3.23).
So the mapping f is additive. Letting z;, = mz and z; = 0 in (3.20) for all
J € J and using (3.22), we get f(ux) = uf(z) for all z € Ap and all u € T?.
Hence it follows from Lemma 3.1 that the mapping f : Ag — A is C-linear.

Let s1 < 1 (we have a similar proof when s; > 1,52 < 1 or 53 > 1). Since f
is C-linear, it follows from (3.21) that

£ ([1, 22]) — [F(@1), 22] — [21, F(22)]]| ,
= lim -};”f([mcl,xg]) — [f(nz1), z2] — [nxl,f(wz)]HA

Nn—00

<6 lim 2 gy 5 ol g, =0
= %S n 1l Ag 14211 A

for all z1,z2 € Ap. So
f(z1, @2]) = [f(z1), x2] + [21, f(22)]
for all z1,z2 € Ag. Hence the mapping f : Ag — A is a Lie derivation. O

For m = 2, we have the following theorem.

Theorem 3.12. Let 6,0, s1,s2 and {r;}ic; be non-negative real numbers such
that s; # 1 for some i = 1,2 and X := Zje] r; # 1, where J is a non-empty
subset of {1,2}. Suppose that f : Ay — A is a mapping such that

(3.24) IDuf (21, 22)lla < 6Tjesllz; |4,

£ ([m1, 22]) = [£(21), 2] — [21, F(22)]]| 4 < Ollz1 I3, N2 lI2,
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for all x1,20 € Ag and all u € T' (by letting || - ||2‘0 = 1). Then the mapping
f: Ao — A is a Lie derivation.

Proof. Without loss of generality, we may assume that 2 € J. Letting ;1 =
zo = 0 in (3.24), we get that f(0) = 0. Letting 4 =1, 1 = 2z and 72 = 0 in
(3.24), we get that f(2¢) = 2f(x) for all x € Ag. Hence

(3.25) P = 0@ @) = @)

for all z € Ag and all n € N. Let A < 1 (we have a similar proof when A > 1).
By (3.24) and (3.25) we have

. 1
1Duf(@r,z2)lla = lm ol Dyf (27w, 2%72)] 4

2/\7’L r
<0 lim ST a3, =0

for all z1,72 € Ap and all u € T*. Hence it follows from (3.25) that

(3.26)  f(2uz1 + pw2) + fuzi + 2px2) + fluzy + pao) = dpf (21 + 22)

for all z;,75 € Ag and all u € T!. Letting u = 1 in (3.26) and applying
Lemma 3.10, we get that the mapping f is additive. Letting z2 = 0 in (3.26)
and using (3.25), we get that f(uz,) = uf(z1) for all z; € Ao and all p € T'.
So by Lemma 3.1, the mapping f is C-linear. The rest of the proof is similar
to the proof of Theorem 3.11. a
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