References
- A. Bayad and T. Kim, Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 20 (2010), no. 2, 247-253.
- E. Deeba and D. Rodriguez, Stirling's and Bernoulli numbers, Amer. Math. Monthly 98 (1991), no. 5, 423-426. https://doi.org/10.2307/2323860
- F. T. Howard, Applications of a recurrence for the Bernoulli numbers, J. Number Theory 52 (1995), no. 1, 157-172. https://doi.org/10.1006/jnth.1995.1062
- D. S. Kim, Identities of symmetry for q-Bernoulli polynomials, Comput. Math. Appl. 60 (2010), no. 8, 2350-2359. https://doi.org/10.1016/j.camwa.2010.08.028
- D. S. Kim, Symmetry identities for generalized twisted Euler polynomials twisted by un-ramified roots of unity, Proc. Jangjeon Math. Soc. 15 (2012), no. 3, 303-316.
- D. S. Kim, Identities of symmetry for generalized twisted Bernoulli polynomials twisted by ramified roots of unity, An. Stiint. Univ. Al. I. Cuza Iasi, Ser. Noua, Mat. 60 (2014), no. 1, 19-36.
- D. S. Kim, N. Lee, J. Na, and K. H. Park, Identities of symmetry for higher-order Euler polynomials in three variables (I), Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 1, 51-74.
- D. S. Kim, N. Lee, J. Na, and K. H. Park, Abundant symmetry for higher-order Bernoulli polynomials (I), Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 3, 461-482.
-
D. S. Kim and K. H. Park, Identities of symmetry for Euler polynomials arising from quotients of fermionic integrals invariant under
$S_3$ , J. Inequal. Appl. 2010 (2010), Article ID 851521, 16 pages. -
D. S. Kim and K. H. Park, Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant under
$S_3$ , Appl. Math. Comput. 219 (2013), no. 10, 5096-5104. https://doi.org/10.1016/j.amc.2012.11.061 -
T. Kim, Symmetry p-adic invariant integral on
$\mathbb{Z}_p$ for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), no. 12, 1267-1277. https://doi.org/10.1080/10236190801943220 - T. Kim, On the symmetries of the q-Bernoulli polynomials, Abstr. Appl. Anal. 2008 (2008), Art. ID 914367, 7 pp.
- T. Kim, On the symmetric properties for the generalized twisted Bernoulli polynomials, J. Inequal. Appl. 2009 (2009), Article ID 164743, 8 pages.
-
T. Kim, Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on
$\mathbb{Z}_p$ , Russ. J. Math. Phys. 16 (2009), no. 1, 93-96. https://doi.org/10.1134/S1061920809010063 - T. Kim, L.-C. Jang, Y.-H. Kim, and K.-W. Hwang, On the identities of symmetry for the generalized Bernoulli polynomials attached to of higher order, J. Inequal. Appl. 2009 (2009), Art. ID 640152, 7 pp.
- T. Kim, S.-H. Rim, and B. Lee, Some identities of symmetry for the generalized Bernoulli numbers and polynomials, Abstr. Appl. Anal. 2009 (2009), Art. ID 848943, 8 pp.
- Y.-H. Kim and K.-W. Hwang, Symmetry of power sum and twisted Bernoulli polyno-mials, Adv. Stud. Contemp. Math. (Kyungshang) 18 (2009), no. 2, 127-133.
- N. Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (1979), no. 2, 455-468. https://doi.org/10.1215/S0012-7094-79-04621-0
- S.-H. Rim, Y.-H. Kim, B. Lee, and T. Kim, Some identities of the generalized twisted Bernoulli numbers and polynomials of higher order, J. Comput. Anal. Appl. 12 (2010), no. 3, 695-702.
- H. Tuenter, A symmetry of power sum polynomials and Bernoulli numbers, Amer.Math. Monthly 108 (2001), no. 3, 258-261. https://doi.org/10.2307/2695389
- S. Yang, An identity of symmetry for the Bernoulli polynomials, Discrete Math. 308 (2008), no. 4, 550-554. https://doi.org/10.1016/j.disc.2007.03.030