• Title/Summary/Keyword: degraded Material

Search Result 368, Processing Time 0.03 seconds

A New Xenon Plasma Flat Fluorescent Lamp Enhanced with MgO Nano-Crystals for Liquid Crystal Display Applications

  • Lee, Yang-Kyu;Heo, Seung-Taek;Lee, You-Kook;Lee, Dong-Gu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.186-189
    • /
    • 2010
  • Nano-sized MgO single crystal powders have recently been reported to emit ultraviolet by stimulation of electrons in a vacuum. In this study, nanocrystalline MgO powders were applied to a xenon plasma flat fluorescent lamp (FFL) for a liquid crystal display backlight to improve its emission efficiency through the extra ultraviolet from the nano-MgO crystals. For comparison, a MgO nano-thin film was applied directly on the phosphors inside a lamp panel through e-beam evaporation. Adding MgO nano-crystal powders to the phosphors improved the luminance and efficiency of FFLs by around 20% and MgO nano-crystal coverage of 40% of the phosphor provided the best FFL emission characteristics; however, application of MgO thin film to the phosphors degraded the emission characteristics, even compared to FFLs without MgO. This was due to insufficient ultraviolet stimulation of the phosphors and the crystallinity and low secondary electron coefficient of the MgO.

Conversion Process of Amorphous Si-Al-C-O Fiber into Nearly Stoichiometric SiC Polycrystalline Fiber

  • Usukawa, Ryutaro;Oda, Hiroshi;Ishikawa, Toshihiro
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.610-614
    • /
    • 2016
  • Tyranno SA (SiC-polycrystalline fiber, Ube Industries Ltd.) shows excellent heat-resistance up to $2000^{\circ}C$ with relatively high mechanical strength. This fiber is produced by the conversion process from a raw material (amorphous Si-Al-C-O fiber) into SiC-polycrystalline fiber at very high temperatures over $1500^{\circ}C$ in argon. In this conversion process, the degradation reaction of the amorphous Si-Al-C-O fiber accompanied by a release of CO gas for obtaining a stoichiometric composition and the subsequent sintering of the degraded fiber proceed. Furthermore, vaporization of gaseous SiO, phase transformation and active diffusion of the components of the Si-Al-C-O fiber competitively occur. Of these changes, vaporization of the gaseous SiO during the conversion process results in an abnormal SiC-grain growth and also leads to the non-stoichiometric composition. However, using a modified Si-Al-C-O fiber with an oxygen-rich surface, vaporization of the gaseous SiO was effectively prevented, and then consequently a nearly stoichiometric SiC composition could be obtained.

The influence of the powder sintering the 2nd sintering and the grinding time on superconducting properties of Bi(Pb)SrCaCuO superconductor (Bi(Pb)SrCaCuO 초전도체의 초전도특성에 미치는 분말소결 및 2차성형, 분쇄시간에 따른 영향)

  • 신철기;김영천
    • Electrical & Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.306-311
    • /
    • 1994
  • In this study, the influence of the powder sintering, the 2nd sinteiing and the grinding time on the Superconducting properties in the Bi(Pb)SiCaCuO Superconductor has been studied. From the analysis of SEM and XRD patterns, it was known that the sample prepared by the process of powder sintering has a porous microstructure with the critical temperature(Tc) below 77K, while the sample prepared by the 2nd sintering has a highly oriented microstructure with the Tc above 100K. The Critical Current Density(Jc) of the sample prepared by the 2nd sintering was better than the sample prepared by the process of powder sinteiing, but it's Jc, was low in practical use. Also, the effect of grinding time from 0[min] to 120[min] was investigated. As the grinding time is increased, the samples degraded from high-Tc phase to low-Tc phase and nonsuperconducting phases.

  • PDF

Analysis of a Composite Panel with Transverse Matrix Cracks under Bending and Twisting Moments (굽힘 및 비틀림 하중작용시 횡방향 모재균열을 갖는 복합재료 판넬 해석)

  • Park, Jung-Sun;Hur, Hae-Kyu;Lee, Soo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.971-980
    • /
    • 1997
  • This study is to investigate the stiffness degradation of a composite laminated panel including transverse matrix cracks subjected to bending and twisting moments. Micromechanics theory on the composite material is derived by introducing crack density. Iterative numerical scheme is developed to calculate the degraded composite stiffness which has nonlinear relation due to the crack density. The finite element method is used for structural analysis of the composite panel. Structural responses of the composite panel are examined for various laminated angles and crack density under the bending and twisting moments. Also, the effect of crack opening and closing is considered in the examination. It is realized that the matrix cracks may cause severe stiffness reduction and should be considered in the composite laminated panel.

The Structural Design for Combustor Chamber of Liquid Rocket Engine (액체로켓엔진 연소기 챔버 구조 설계)

  • Chung Yong-Hyun;Ryu Chul-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.36-42
    • /
    • 2004
  • The Properties of material, C18200 which is used for development of high performance liquid rocket engine combustor chamber were obtained by tension tests. The specimen for regenerative combustor was designed by structural analysis using that Properties. After the designed specimen was manufactured by the same manufacturing process of regenerative combustor. the yielding stress and yielding strain were obtained by strength tests. The properties of C18200 was degraded very much after brazing. The estimation of yielding pressure by structural analysis was almost same as that of strength test. The collector Part was yielded and failed previously than that of cooling channel part during strength test.

Effect of surface roughness of AZO thin films on the characteristics of OLED device (AZO 박막의 표면 거칠기에 따른 OLED 소자의 특성)

  • Lee, B.K.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.25-29
    • /
    • 2010
  • We have investigated the effect of surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of AZO thin films, we have processed photo-lithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the AZO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the AZO thin films. Device structure was AZO/${\alpha}$-NPD/DPVB/$Alq_3$/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer. The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

Strength and Reaction Characteristic of the Hardened Blast Furnace Slag Paste using the Alkali Accelerator (알칼리 자극제를 사용한 고로슬래그 경화체의 반응 및 강도특성)

  • Kim, Yun-Mi;Park, Sun-Gyu;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.313-314
    • /
    • 2013
  • The study carried out the experiment with presenting as the fundamental data for developing non-cement by using red mud generated in blast furnace slag and bauxite generated in the process of manufacturing the pig iron process of manufacturing Al(OH)3/Al2O from as the binding material using the accelerator of NaOH. After fixing the thing and the NaOH adding the blast furnace slag and NaOH 10, 20, 30 (%) with 10, 20, 30 (%) substituted the red mud in the blast furnace slag and the experimental method carried out the experiment. And it measured the flexural strength and compressive strength and took a photograph EDS analysis and SEM. Consequently, the compressive strength was improved as the addition rate of the NaOH was high and the compressive strength according to the replacement ratio of the red mud was degraded. This is determined that film of the blast furnace slag is destroyed and it makes the hydration reaction condition and the intensity is revealed.

  • PDF

A study on the fabrication and characteristics of the scaled MONOS nonvolatile memory devices for low voltage EEPROMs (저전압 EEPROM을 위한 Scaled MONOS 비휘발성 기억소자의 제작 및 특성에 관한 연구)

  • 이상배;이상은;서광열
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.727-736
    • /
    • 1995
  • This paper examines the characteristics and physical properties of the scaled MONOS nonvolatile memory device for low programming voltage EEPROM. The capacitor-type MONOS memory devices with the nitride thicknesses ranging from 41.angs. to 600.angs. have been fabricated. As a result, the 5V-programmable MONOS device has been obtained with a 20ms programming time by scaling the nitride thickness to 57.angs. with a tunneling oxide thickness of 19.angs. and a blocking oxide thickness of 20.angs.. Measurement results of the quasi-static C-V curves indicate, after 10$\^$6/ write/erase cycles, that the devices are degraded due to the increase of the silicon-tunneling oxide interface traps. The 10-year retention is impossible for the device with a nitride less than 129.angs.. However, the MONOS memory device with 10-year retentivity has been obtained by increasing the blocking oxide thickness to 47.angs.. Also, the memory traps such as the nitride bulk trap and the blocking oxide-nitride interface trap have been investigated by measuring the maximum flatband voltage shift and analyzing through the best fitting method.

  • PDF

The luminescent characteristics of Al codoped $ZnGa_2$$O_4$:Mn phosphors (Al이 첨가된$ZnGa_2$$O_4$:Mn 형광체의 발광특성)

  • 박용규;한정인;곽민기;한종근;주성후
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 1997
  • The green emitting phosphors of the Field Emission Display(FED), Al codoped ZnGa$_{2}$O$_{4}$:Mn, were synthesized and sintered at high temperature. From X-ray diffraction measurements, it was confirmed that poly crystalline ZnGa$_{2}$O$_{4}$ and ZnAI$_{2}$O$_{4}$ solid solution coexist in Al codoped ZnGa$_{2}$O$_{4}$:Mn. Photoluminescence spectra of Al codoped ZnGa$_{2}$O$_{4}$:Mn show that the main peak position is shifted from 504 nm to 513 nm with the increase of Al concentration. The brightness was improved with the amount of Al dopant. It showed the maximum value at the doping level of 0.03 mole and then, it degraded rapidly. These results are due to the superposition of emission from . ZnGa$_{2}$O$_{4}$:Mn and ZnAI$_{2}$O$_{4}$:Mn.

  • PDF

Investigation of Endurance Degradation in a CTF NOR Array Using Charge Pumping Methods

  • An, Ho-Myoung;Kim, Byungcheul
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.25-28
    • /
    • 2016
  • We investigate the effect of interface states on the endurance of a charge trap flash (CTF) NOR array using charge pumping methods. The endurance test was completed from one cell selected randomly from 128 bit cells, where the memory window value after 102 program/erase (P/E) cycles decreased slightly from 2.2 V to 1.7 V. However, the memory window closure abruptly accelerated after 103 P/E cycles or more (i.e. 0.97 V or 0.7 V) due to a degraded programming speed. On the other hand, the interface trap density (Nit) gradually increased from 3.13×1011 cm−2 for the initial state to 4×1012 cm−2 for 102 P/E cycles. Over 103 P/E cycles, the Nit increased dramatically from 5.51×1012 cm−2 for 103 P/E cycles to 5.79×1012 cm−2 for 104 P/E cycles due to tunnel oxide damages. These results show good correlation between the interface traps and endurance degradation of CTF devices in actual flash cell arrays.