References
- T. Ishikawa and H. Oda, "Defect Control of SiC Polycrystalline Fiber Synthesized from Poly-Aluminocarbosilane," J. Eur. Ceram. Soc., 36 3657-62 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.022
- M. Wilson and E. Opila, "A Review of SiC Fiber Oxidation with a New Study of Hi-Nicalon SiC Fiber Oxidation," Adv. Eng. Mater., 18 [10] 1698-709 (2016). https://doi.org/10.1002/adem.201600166
- O. Flores, R. K. Bordia, D. Nestler, W. Krenkel, and G. Motz, "Ceramic Fibers Based on SiC and SiCN Systems: Current Research, Development, and Commercial Status," Adv. Eng. Mater, 16 [6] 621-36 (2014). https://doi.org/10.1002/adem.201400069
- P. Colombo, G. Mera, R. Riedel, and G. D. Soraru, "Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics," Ceram. Sci. Technol., 4 245-320 (2013).
- J. J. Sha, T. Nozawa, J. S. Park, Y. Katoh, and A. Kohyama, "Effect of Heat Treatment on the Tensile Strength and Creep Resistance of Advanced SiC Fibers," J. Nucl. Mater., 329 592-96 (2004).
- K. Itatani, K. Hattori, D. Harima, M. Aizawa, and I. Okada, "Mechanical and Thermal Properties of Silicon-Carbide Composites Fabricated with Short Tyranno Si-Zr-C-O Fiber," J. Mater. Sci., 36 3679-86 (2001). https://doi.org/10.1023/A:1017909430037
- N. R. de Esparza, N. Cocera, L. Vazquez, J. Alkorta, I. Ocana, and J. M. Sanchez, "Characterization of CVD Bonded Tyranno Fibers Oxidized at High Temperaturs," J. Am. Ceram. Soc., 97 [12] 3958-66 (2014). https://doi.org/10.1111/jace.13212
- S. Yajima, M. Omori, J. Hayashi, K. Okamura, T. Matsuzawa, and C. Liaw, "Symple Synthesis of the Continuous SiC Fiber with High Tensile Strength," Chem. Lett., 1976 [6] 551-54 (1976).
-
T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura, and T. Nagasawa, "High-Strength Alkali-Resistant Sintered SiC Fibre Stable to 2200
$^{\circ}C$ ," Nature, 391 773-75 (1998). https://doi.org/10.1038/35820 - M. Takeda, A. Urano, J. Sakamoto, and Y. Imai, "Microstructure and Oxidative Degradation Behavior of Silicon Carbide Fiber Hi-Nicalon Type S," J. Nucl. Mater., 258 1594-99 (1998).
- T. Ishikawa, "Advances in Inorganic Fibers," Adv. Polym. Sci., 178 109-44 (2005). https://doi.org/10.1007/b104208
- C. Sauder and J. Lamon, "Tensile Creep Behavior of SiC-Based Fibers with a Low Oxygen Content," J. Am. Ceram. Soc., 90 [4] 1146-56 (2007). https://doi.org/10.1111/j.1551-2916.2007.01535.x
- J. J. Sha, J. S. Park, T. Hinoki, and A. Kohyama,"Tensile Behavior and Microstructural Characterization of SiC Fibers under Loading," Mater. Sci. Eng. A, 456 72-7 (2007). https://doi.org/10.1016/j.msea.2006.12.021
Cited by
- Low Pressure Joining of SiCf/SiC Composites Using Ti3AlC2 or Ti3SiC2 MAX Phase Tape vol.54, pp.4, 2017, https://doi.org/10.4191/kcers.2017.54.4.08
- Mechanical Properties of Cf/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis vol.55, pp.4, 2016, https://doi.org/10.4191/kcers.2018.55.4.11
- High-Performance SiC-Polycrystalline Fiber with Smooth Surface vol.1, pp.1, 2018, https://doi.org/10.3390/ceramics1010015
- Heat-Generating Behavior of SiC Fiber Mat Composites Embedded with Ceramic Powder for Heat Conservation vol.56, pp.6, 2016, https://doi.org/10.4191/kcers.2019.56.6.08
- A review on the joining of SiC for high-temperature applications vol.57, pp.3, 2016, https://doi.org/10.1007/s43207-020-00021-4
- Development of precursor ceramics using organic silicon polymer vol.17, pp.5, 2016, https://doi.org/10.1111/ijac.13572