DOI QR코드

DOI QR Code

Structural Control Aiming for High-performance SiC Polycrystalline Fiber

  • Received : 2016.09.02
  • Accepted : 2016.09.12
  • Published : 2016.11.30

Abstract

SiC-polycrystalline fiber (Tyranno SA, Ube Industries, Ltd.) shows very high heat-resistance and excellent mechanical properties up to very high temperatures. However, further increase in the strength is required. Up to now, we have already clarified the relationship between the strength and the defect-size of the SiC-polycrystalline fiber. The defects are formed during the conversion process from the raw material (amorphous Si-Al-C-O fiber) into SiC-polycrystalline fiber. In this conversion process, a degradation of the Si-Al-C-O fiber and a subsequent sintering of the degraded fiber proceed as well, accompanied by a release of CO gas and compositional changes, to obtain the dense SiC-polycrystalline fiber. Since these changes proceed in each filament, the strict control should be needed to minimize residual defects on the surface and in the inside of each filament for achieving the higher strength. In this paper, the controlling factors of the fiber strength and the fine structure will appear.

Keywords

References

  1. W.C.Miller, Encyclopedia of Textiles, Fibers, and Nonwoven Fabrics; pp. 438-50, Edited by M.Grayson Wiley, New York, 1984.
  2. T. Ishikawa and H. Oda, "Defect control of SiC Polycrystalline Fiber Synthesized from Poly-Aluminocarbosilane," J. Eur. Ceram. Soc., 36 [11] 3657-62 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.022
  3. T. Ishikawa, "Heat-resistant Inorganic Fibers," Adv. Sci. Technol., 89 129-38 (2014). https://doi.org/10.4028/www.scientific.net/AST.89.129
  4. T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura, and T. Nagasawa, "High-Strength Alkali-Resistant Sintered SiC Fibre Stable to 2200$^{\circ}C$," Nature, 391 773-75 (1998). https://doi.org/10.1038/35820
  5. M. Takeda, A. Urano, J. Sakamoto, and Y. Imai, "Microstructure and Oxidative Degradation Behavior of Silicon Carbide Fiber Hi-Nicalon Type S," J. Nucl. Mater., 258 1594-99 (1998).
  6. S. Yajima, M. Omori, J. Hayashi, K. Okamura, T. Matsuzawa, and C. Liaw, "Symple Synthesis of the Continuous SiC Fiber with High Tensile Strength," Chem.Lett., 1976 [6] 551-54 (1976).
  7. O. Flores, R. K.Bordia, D. Nestler, W. Krenkel, and G. Motz, "Ceramic Fibers Based on SiC and SiCN Systems: Current Research, Development, and Commercial Status," Adv. Eng. Mater., 16 [6] 621-36 (2014). https://doi.org/10.1002/adem.201400069
  8. P. Colombo, G. Mera, R. Riedel, and G. D. Soraru, "Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics," Ceram. Sci. Technol., Set, 2013 245-320 (2013).
  9. J. J.Sha, T. Nozawa, J. S.Park, Y. Katoh, and A. Kohyama, "Effect of Heat Treatment on the Tensile Strength and Creep Resistance of Advanced SiC Fibers," J. Nucl. Mater., 329 592-96 (2004).
  10. K. Itatani, K. Hattori, D. Harima, M. Aizawa, and I. Okada, "Mechanical and Thermal Properties of Silicon-Carbide Composites Fabricated with Short Tyranno Si-Zr-C-O Fiber," J. Mater. Sci., 36 3679-86 (2001). https://doi.org/10.1023/A:1017909430037
  11. N. Remirez de Esparza, N. Cocera, L. Vazquez, J. Alkorta, I. Ocana, and J. M. Sanchez, "Characterization of CVD Bonded Tyranno Fibers Oxidized at High Temperaturs," J. Am. Ceram. Soc., 97 [12] 3958-66 (2014). https://doi.org/10.1111/jace.13212
  12. N. Yusof, and A. F. Ismail, "Post Spinning and Pyrolysis Processes of Polyacrylonitrile (PAN)-Based Carbon Fiber and Activated Carbon Fiber: A Review," J. Anal. Appl. Pyrolysis, 93 1-13 (2012). https://doi.org/10.1016/j.jaap.2011.10.001
  13. J. Liu, Z. Yue, and H. Fong, "Continuous Nanoscale Carbon Fibers with Superior Mechanical Strength," Small, 5 [5] 536-42 (2009). https://doi.org/10.1002/smll.200801440
  14. F. Tanaka, T. Okada, H. Okuda, I. A. Kinloch, and R. J. Young, "Factors Controlling the Strength of Carbon Fibers in Tension," Composites, Part A, 57 88-94 (2014). https://doi.org/10.1016/j.compositesa.2013.11.007
  15. G.Fritz, "Bildung Siliciumorganischer Verbindungen . III. Mitt.: Zum thermischen Zerfall von $SiH_4$," Zeitschrift fur Naturforschung, 7 [9-10] 507-8 (1952). https://doi.org/10.1515/znb-1952-9-1004

Cited by

  1. Low Pressure Joining of SiCf/SiC Composites Using Ti3AlC2 or Ti3SiC2 MAX Phase Tape vol.54, pp.4, 2017, https://doi.org/10.4191/kcers.2017.54.4.08
  2. Mechanical Properties of Cf/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis vol.55, pp.4, 2016, https://doi.org/10.4191/kcers.2018.55.4.11
  3. High-Performance SiC-Polycrystalline Fiber with Smooth Surface vol.1, pp.1, 2018, https://doi.org/10.3390/ceramics1010015
  4. Strain sensing characteristics using piezoresistivity of semi-conductive silicon carbide fibers vol.28, pp.10, 2016, https://doi.org/10.1088/1361-665x/ab3b2f
  5. A review on the joining of SiC for high-temperature applications vol.57, pp.3, 2016, https://doi.org/10.1007/s43207-020-00021-4
  6. Embedded silicon carbide fiber sensor network based low-velocity impact localization of composite structures vol.29, pp.5, 2020, https://doi.org/10.1088/1361-665x/ab7946
  7. Development of precursor ceramics using organic silicon polymer vol.17, pp.5, 2016, https://doi.org/10.1111/ijac.13572
  8. Silicon Carbide Fibers vol.33, pp.4, 2016, https://doi.org/10.4325/seikeikakou.33.121
  9. Influence of pyrolysis and melt infiltration temperatures on the mechanical properties of SiCf/SiC composites vol.48, pp.2, 2022, https://doi.org/10.1016/j.ceramint.2021.09.231