• 제목/요약/키워드: deformation approach

검색결과 866건 처리시간 0.026초

용접변형에의 곡률의 영향에 관한 연구 (On the Effect of Plate Curvature on Welding Deformation)

  • 이주성;이진태
    • 한국해양공학회지
    • /
    • 제24권2호
    • /
    • pp.67-73
    • /
    • 2010
  • A simplified finite element analysis has been used to predict the weld-induced deformation to bead-on-plate welding of steel plates having curvatures in the welding direction. In this study, the equivalent loading method based on inherent strain was used to investigate the effect of longitudinal curvature on the weld-induced deformation of curved plates. Equivalent loads were derived from the inherent strain distribution around the weld line, and the loads were used for linear finite element analyses. These kinds of numerical simulations can, of course, be performed by using the rigorous thermalelastic-plastic analysis method. This approach is not, however, practical for use in weld-induced deformation analysis of large and complex structures, such as ship structures, in view of computing time and cost. The present equivalent load approach has been applied to several plate models having curvatures in the welding direction, and the results are compared with those obtained by thermal-elastic-plastic analysis and also with those obtained by the other simplified method found in reference. As far as the present results are concerned, the weld-induced deformation of curved plates can be accurately predicted by the method presented in this paper.

Equivalence Principles Based Skin Deformation of Character Animation

  • You, L.H.;Chaudhry, E.;You, X.Y.;Zhang, Jian J.
    • International Journal of CAD/CAM
    • /
    • 제9권1호
    • /
    • pp.61-69
    • /
    • 2010
  • Based on the equivalence principles of physical properties, geometric properties and externally applied forces between a surface and the corresponding curves, we present a fast physics and example based skin deformation method for character animation in this paper. The main idea is to represent the skin surface and its deformations with a group of curves whose computation incurs much less computing overheads than the direct surface-based approach. The geometric and physical properties together with externally applied forces of the curves are determined from those of the surface defined by these curves according to the equivalence principles between the surface and the curves. This ensures the curve-based approach is equivalent to the original problem. A fourth order ordinary differential equation is introduced to describe the deformations of the curves between two example skin shapes which relates geometric and physical properties and externally applied forces to shape changes of the curves. The skin deformation is determined from these deformed curves. Several examples are given in this paper to demonstrate the application of the method.

포화 점성토지반 침하량의 합리적 평가를 위한 실용적인 응력경로법 적용방법 : Part I (특성변형거동의 평가와 활용) (A Practical App개ach of Stress Path Method for Rational Settlement Estimation of Saturated Clay Deposit : Part I (Evaluation and Use of Characteristic Deformation Behaviors))

  • 김창엽;정충기
    • 한국지반공학회논문집
    • /
    • 제21권4호
    • /
    • pp.83-98
    • /
    • 2005
  • 본 연구에서는 포화 점성토지반 침하량의 합리적인 평가를 위한 새로운 개념의 응력경로법 적용방법을 제안하였다. 제안된 적용방법은 특정 점성토지반에 대해 구조물 침하와 관련하여 현장에서 나타날 수 있는 모든 응력변화 조건을 포괄하는 특성변형거동을 실험적으로 선행하여 평가한 다음, 이를 이용하여 일체의 추가적인 시험없이 발생가능한 다양한 현장조건에 대해 손쉽게 침하량을 평가하는 방법이다. 본 연구의 Part I에서는 이러한 새로운 침하량 평가개념의 실용화와 관련하여 포화 점성토지반의 침하관련 특성변형거동을 최소한의 시험만으로 효율적으로 평가하고 이를 바탕으로 임의의 응력변화 조건에 대해 손쉽게 변형거동을 예측하는 구체적인 방법을 개발하였으며, 그 적용성을 실제 사례를 통해 명확히 확인하였다.

Mechanical properties and deformation behavior of carbon nanotubes calculated by a molecular mechanics approach

  • Eberhardt, Oliver;Wallmersperger, Thomas
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.685-709
    • /
    • 2014
  • Carbon nanotubes are due to their outstanding mechanical properties destined for a wide range of possible applications. Since the knowledge of the material behavior is vital regarding the possible applications, experimental and theoretical studies have been conducted to investigate the properties of this promising material. The aim of the present research is the calculation of mechanical properties and of the mechanical behavior of single wall carbon nanotubes (SWCNTs). The numerical simulation was performed on basis of a molecular mechanics approach. Within this approach two different issues were taken into account: (i) the nanotube geometry and (ii) the modeling of the covalent bond. The nanotube geometry is captured by two different approaches, the roll-up and the exact polyhedral model. The covalent bond is modeled by a structural molecular mechanics approach according to Li and Chou. After a short introduction in the applied modeling techniques, the results for the Young's modulus for several SWCNTs are presented and are discussed extensively. The obtained numerical results are compared to results available in literature and show an excellent agreement. Furthermore, deviations in the geometry stemming from the different models are given and the resulting differences in the numerical findings are shown. Within the investigation of the deformation mechanisms occurring in SWCNTs, the basic contributions of each individual covalent bond are considered. The presented results of this decomposition provide a deeper understanding of the governing deformation mechanisms in SWCNTs.

19mm 밀입도 아스팔트 혼합물의 소성변형 예측 모델 개발 (Development of the Permanent Deformation Prediction Model of 19mm Dense Grade Asphalt Mixtures)

  • 박희문;최지영;박성완
    • 한국도로학회논문집
    • /
    • 제7권4호
    • /
    • pp.1-8
    • /
    • 2005
  • 아스팔트 포장에서 소성변형은 교통하중에 의해 발생하는 가장 심각한 파손중의 하나이다. 현재 개발중인 한국형 포장 설계법은 역학적-경험적 설계법으로 다양한 포장 파손 예측모델을 필요로 한다. 이 연구는 포장설계시 아스팔트층에서 발생하는 소성 변형량을 예측할 수 있는 모델을 개발하여 포장의 공용성을 규명하고자 하였다. 본 논문은 아스팔트 혼합물의 소성변형에 영향을 미치는 인자를 규명하고, 소성변형 예측 모델을 개발하고자 한다. 이를 위하여 3단계 온도, 공극률을 조합한 19mm 밀입도 혼합물에 대하여 삼축압축 반복재하시험을 수행하였다. 그 결과 혼합물의 온도와 공극률이 소성변형 예측 모델 계수에 영향을 미치는 것으로 확인되었다. 이에 근거하여 19mm밀입도 아스팔트 혼합물에 대한 소성변형 예측식을 다중 회귀분석을 통하여 개발하였으며, 개발된 모델을 검증하였다.

  • PDF

축대칭 박판 하우징의 디프드로잉 성형에 대한 유한요소법해석 및 파단 원인 분석 (Finite Element Analysis of Deep Drawing for Axisymmetric Sheet Metal Housing)

  • 윤정호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 박판성형기술의 진보
    • /
    • pp.191-198
    • /
    • 1994
  • A practical example of the axisymmetric deep drawing process is simulated by the elastic-plastic finite element analysis using updated Lagrangian approach considering the large deformation. An approach is suggested to solve the problem of the ductile fracture that may encounter during the deep drawing process. The result can be applied to the design of the die for the axisymmetric deep drawing.

박판구조물의 용접 면외변형에 대한 이론 해석적 접근 (Theoretical Approach to Welding Out-of Plane Oeformations in Thin Plate Structures)

  • 서승일
    • 대한조선학회논문집
    • /
    • 제42권5호
    • /
    • pp.466-471
    • /
    • 2005
  • The out-of-plane deformation in thin plate structure has been a serious qualify problem. It has been known that the out-of-plane deformation is caused by the angular deformation of welded joint. However, experimental results show that the conventional theory based on angular deformation is not appropriate for prediction of the out-of-plane deformation in thin plate structure. In this study, large deformation plate theory is introduced to clarify the effect of residual stress on the out-of-plane deformation. A simple equation is proposed to predict the out-of-plane deformation. The results by the proposed method show good agreement with the experimental results.

방진고무 변형형상 및 하중-변위곡선 예측을 위한 단순 유한요소법 (A Simple Finite Element Method to Determination of Deformed Shape and Load-Displacement Curve of Elastomers)

  • 전만수;문호근;김성진
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.217-222
    • /
    • 1997
  • A simple finite element approach to predicting deformed shape and load-deflection curve of elastomers is presented in this paper. The method is based on several simplifications in deformation pattern and material behavior. The conventional updated Lagrangian approach is employed together with material data obtained by a simple tension test. The presented approach is verified through comparison of predicted results with experimental ones and applied successfully to shape design of various elastomers for shock, vibration and noise control. The advantage of the presented approach lies in easiness, simplicity and accuracy enough for engineering application.

축대칭 복합압출공정의 소성변형 연구 (A Study of the Plastic Deformation in Axisymmetric Combined Extrusion)

  • 한철호
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2005-2015
    • /
    • 1994
  • An analytical method based on the upper bound approach for the cup-bar axisymmetric combined extrusion is presented to determine the deformation zones as well as extrusion load and deformed geometry in the early stage. A new kiematically admissible velocity field is derived by the appropriate transformation of the original velocity field and applying the flow function approach. The derived velocity field is directly related to the boundary function for the plastically deforming zones and the parameter controlling the flow direction to the forward part or backward part. Experiments are carred out with the annealed aluminum 2024 at room temperature for the various area reductions. The workhardening effect is considered in the formulation as a function of the height ratio between the deformed billet and the orighinal billet to calculate the extrusion pressures. The theoretical predictions for the extrusion loads and deformed configuration are in good agreement with the experimental results.

삼각망의 형상 변형 (Shape Deformation of Triangular Net)

  • 유동진
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.134-143
    • /
    • 2007
  • A new approach based on mean value coordinate combined with Laplacian coordinate is proposed for shape deformation of a large polygon model composed of triangular net. In the method, the spherical mean value coordinates for closed control meshes is introduced to describe a vertex in the triangle meshes to be deformed. Furthermore, the well known quardratic least square method for the Laplacian coordinates is employed in order to deform the control meshes. Because the mean value coordinates are continuous and smooth on the interior of control meshes, deforming operation of control meshes change the shape of polygon model while preserving the intrinsic surface detail. The effectiveness and validity of this novel approach was demonstrated by using it to deform large and complex polygon models with arbitrary topologies.