• Title/Summary/Keyword: debonding load

Search Result 106, Processing Time 0.026 seconds

Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study

  • Tahar, Hassaine Daouadji;Boussad, Abbes;Abderezak, Rabahi;Rabia, Benferhat;Fazilay, Abbes;Belkacem, Adim
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.409-420
    • /
    • 2019
  • The paper presents the results of an experimental and numerical programme to characterize the behaviour of steel beams reinforcement by composite plates. Important failure mode of such plated beams is the debonding of the composite plates from the steel beam due to high level of stress concentration in the adhesive at the ends of the composite plate. In this new research, an experimental and numerical finite element study is presented to calculate the stresses in the sika carbodur and sika wrap reinforced steel beam under mechanical loading. The main objective of the experimental program was the evaluation of the force transfer mechanism, the increase of the load capacity of the steel beam and the flexural stiffness. It also validated different analytical and numerical models for the analysis of sika carbodur and sika wrap reinforced steel beams. In particular, a finite element model validated with respect to the experimental data and in relation to the analytical approach is presented. Experimental and numerical results from the present analysis are presented in order to show the advantages of the present solution over existing ones and to reconcile debonding stresses with strengthening quality.

Tensile damage of reinforced concrete and simulation of the four-point bending test based on the random cracking theory

  • Chang, Yan-jun;Wan, Li-yun;Mo, De-kai;Hu, Dan;Li, Shuang-bei
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.289-299
    • /
    • 2022
  • Based on the random cracking theory, the cylinder RVE model of reinforced concrete is established and the damage process is divided into three stages as the evolution of the cracks. The stress distribution along longitude direction of the concrete and the steel bar in the cylinder model are derived. The equivalent elastic modulus of the RVE are derived and the user-defined field variable subroutine (USDFLD) for the equivalent elastic modulus is well integrated into the ABAQUS. Regarding the tensile rebars and the concrete surrounding the rebars as the equivalent homogeneous transversely isotropic material, and the FEM analysis for the reinforced concrete beams is conducted with the USDFLD subroutine. Considering the concrete cracking and interfacial debonding, the macroscopic damage process of the reinforced concrete beam under four-point bending loading in the simulation. The volume fraction of rebar and the cracking degree are mainly discussed to reveal their influence on the macro-performance and they are calibrated with experimental results. Comparing with the bending experiment performed with 8 reinforced concrete beams, the bending stiffness of the second stage and the ultimate load simulated are in good agreement with the experimental values, which verifies the effectiveness and the accuracy of the improved finite element method for reinforced concrete beam.

Fracture Characteristics of RC Beams Reinforced with GFSP (유리섬유-강 복합판으로 보강된 RC 보의 파괴 특성)

  • Kim, Chung Ho;Jang, Hee Suk;Ko, Sin Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.153-159
    • /
    • 2007
  • This paper is experimental investigation for failure characteristics and performance of a RC beams strengthened with GFSP which were developed for improvement of the early debonding problems in the externally bonded FRP systems. To represent damages and load conditions of the existing beam, pre-cracks and repeating loads are adopted for experimental parameters. In this experiment, it is confirmed that strengthening with GFSP is a very effective strengthening method for an increase in strength, a decrease in deflection, a control of the crack. But it shown that the design of the beams to be strengthened with GFSP should be consider a brittle behavior of the grass fiber on the flexural capacity.

Numerical Study on the Skin Friction Characteristics of Tension Type Ground Anchors in Weathered Soil (풍화토 지반에 적용된 인장형 앵커의 주면마찰응력 분포특성에 대한 수치해석적 연구)

  • Jeong, Heyon-Sik;Han, Kwang-Suk;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.39-56
    • /
    • 2017
  • Distribution of both axial force and skin friction should be investigated in order to estimate pull-out capacity of ground anchors. Numerical method of computing load-transfer characteristics of the ground anchors, however, has not been specified and studies on this area are not sufficient. This study suggested the numerical method of simulating the characteristics of axial force and skin friction distribution against the tension type ground anchors. Also, debonding behaviors of skin friction and axial force were calculated by the suggested numerical method as a function of load levels. As a result of the review, it is confirmed that the distributions of axial force and skin friction by the suggested numerical method are relatively similar to those of field test results.

A Study on Flexural Behavior of Externally Reinforced R.C. Beam with Carbon Fiber Sheet : In Case of Constructional Deficiencies (탄소섬유시트로 보강된 철근콘크리트 보의 시공불량시 휨 거동에 관한 연구)

  • Park, Hyun-Jung;Lee, Hong-Ju;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.95-102
    • /
    • 2002
  • The flexural behavior of the reinforced concrete (RC) structure upgraded by external reinforcements was examined in this study. It is well known that the incorporation of carbon fiber sheet (CFS) with concrete is one of the most effective ways to strengthen the RC structure. Complete bonding is required between CFS and concrete in order to make the RC structure provide its full function until the time the Re structures serve. Many studies have reported that construction deficiencies have caused the debonding of the CFS from concrete before the RC structure with CFS reaches its ultimate capacity. This research took a systematic look at the failure mechanism, macroscopic load-deformation characteristics, the maximum load applied, and maximum bending moment when construction deficiencies exist. The results of the experiment conducted were compared with theoretically derived values. In the future, the results of this investigation will help minimize the factors of construction deficiencies, which may occur when CFS is used to reinforce a RC structure. The experiment was manipulated with steel reinforcement ratio and piles of CFS on a total of 14 beams ($20cm{\times}30cm{\times}240cm$). The results showed that internal moment capacity increased even when construction deficiencies existed. However, RC structures with CFS in the field still contain a considerable level of potential risks.

Evaluation of Failure Mode in Concrete Beam Restrengthened with GFRP with Various Initial Conditions (GFRP로 보강된 다양한 초기 조건의 콘크리트보의 파괴 거동 평가)

  • Jin-Won Nam;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.177-183
    • /
    • 2023
  • Various failure modes occur in the concrete beams reinforced with GFRP(Glass Fiber Reinforced Plastic) under initial condition and repairing patterns. In this study, the failure behaviors of concrete beams restrengthened with GFRP sheet with slightly higher elastic modulus than concrete were investigated. For the tests, concrete beams with 24 MPa were manufactured, and the effects of initial notch, overlapping, end-strip reinforcement, and fiber anchors were analyzed on failure load. The cases of GFRP overlap around notch and the initial notch showed increasing failure loads similar to those of normal restrengthened case since the epoxy of the saturated GFRP sufficiently repaired the notch area. Compared to the control case without restrengthening of GFRP, the concrete with initial notch showed 0.78 of loading ratio and normal restrengthening showed 4.43~5.61 times of increasing ratio of failure loading, where interface-debonding from flexural crack were mainly observed. The most ideal failure behavior, break of GFRP, was observed when end-strip over 1/3 height from bottom and fiber anchor were installed, which showed increasing failure load over 150 % to normal restrengthening.

A Study on the Flexural Behavior of RC Beams Strengthened with High-Performance Carbon Fiber Bars (고성능 탄소섬유봉으로 보강된 철근콘크리트 보의 휨거동에 관한 연구)

  • 하기주;신종학;박연동;전찬목;이영범;김기태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.451-456
    • /
    • 2002
  • An experimental study was carried out to investigate the flexural behavior of RC beams strengthened with high-performance carbon fiber bars. Specimens designed with the conventional retrofitting method were also tested to compare load-carrying capacity and ductility. As the results, specimens strengthened with high-performance carbon fiber bars showed much higher load-carrying capacity and ductility compared to specimens strengthened with a steel plate and carbon fiber sheets. The failure mechanism of the specimen strengthened with a high-performance carbon fiber bar was bond-slip, whereas that of the others were interface debonding or rip-off.

  • PDF

Ultimate Load of RC Structures Bonded with the Soffit Plate by p-Version Nonlinear Analysis (p-Version 비선형 해석에 의한 팻취보강된 RC구조물의 극한강도 산정)

  • 안재석;박진환;홍종현;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.365-372
    • /
    • 2004
  • A new finite element model will be presented to analyze the nonlinear behavior of not only RC beams and slabs, but also RC beams strengthened by a patch repair. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on hardening rule, crushing condition, plate-end debonding strength model and so on. The Gauss-Lobatto numerical quadrature is applied to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several numerical examples for the load-deflection curves, the ultimate loads, and the failure modes of reinforced connote slabs and RC beams bonded with steel plates or FRP plates compared with available experimental and numerical results.

  • PDF

Ductility Assesment of Damaged RC Bridge Piers w with Lap-Spliced Bars

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.453-456
    • /
    • 2003
  • This research is to evaluate the seismic performance of reinforced concrete bridge piers with lap-spliced longitudinal reinforcement steels in the plastic hinge region, and to develop the enhancement scheme of their seismic capacity. Six circular columns of 0.6m diameter and 1.5m height were made with two confinement steel ratios. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under an axial load, P=$0.1f_{ck}A_{g}$, and residual seismic performance of damaged columns was evaluated. Test results show that RC bridge piers with lap-spliced longitudinal steels behaved with minor damage even under artificial earthquakes with 0.22g PGA, but failed at low ductility subjected to the subsequent quasi-static load test. This failure was due to the debonding of the lap splice. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region showed significant improvement both in flexural strength and displacement ductility.

  • PDF

An analytical analysis of the pullout behaviour of reinforcements of MSE structures

  • Ren, Feifan;Wang, Guan;Ye, Bin
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.233-240
    • /
    • 2018
  • Pullout tests are usually employed to determine the ultimate bearing capacity of reinforced soil, and the load-displacement curve can be obtained easily. This paper presents an analytical solution for predicting the full-range mechanical behavior of a buried planar reinforcement subjected to pullout based on a bi-linear bond-slip model. The full-range behavior consists of three consecutive stages: elastic stage, elastic-plastic stage and debonding stage. For each stage, closed-form solutions for the load-displacement relationship, the interfacial slip distribution, the interfacial shear stress distribution and the axial stress distribution along the planar reinforcement were derived. The ultimate load and the effective bond length were also obtained. Then the analytical model was calibrated and validated against three pullout experimental tests. The predicted load-displacement curves as well as the internal displacement distribution are in closed agreement with test results. Moreover, a parametric study on the effect of anchorage length, reinforcement axial stiffness, interfacial shear stiffness and interfacial shear strength is also presented, providing insights into the pullout behaviour of planar reinforcements of MSE structures.