• Title/Summary/Keyword: cylinders

Search Result 1,174, Processing Time 0.023 seconds

A Note on the Two-Dimensional Added Mass Moment of Inertia in Torsional Vibration of Cylinders of Curvilinear-Element Sections with Chines. (배골형단면(背骨型斷面) 주상체(柱狀體)의 자유수면(自由水面)하에서의 비틂진동(振動)에 대(對)한 이차원적(二次元的) 부가관성(附加慣性)모우먼트의 계산(計算))

  • Key-P.,Rhee;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.2
    • /
    • pp.41-44
    • /
    • 1974
  • A calculation of the two dimensional added mass moment of inertia for the Kim's chine form sections is made with a special consideration of a location of a axis of rotation. The results are compared with those of Lewis form section equivalent to the above chine form sections calculated by Kumai.

  • PDF

Approximate Interpolator for Direct Fourier Reconstruction in Diffraction Tomography (회절 단층법에서 직접 푸리에 재구성을 위한 근사적 보간 함수에 관한 연구)

  • Lee, Moon Ho;Lim, Young Seok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.167-172
    • /
    • 1987
  • In this paper, the interpolation schemes for Direct Fourier Reconstruction in Diffraction Tomography are discussed. The interpolator using circular sampling theorem is modified so that the reconstructed image may be closer to original object than those produced with other interpolators. Reconstructed images obtained by computer simulations with several interpolators including that derived in this paper are compared to original object: two concentric cylinders.

  • PDF

POSITIVE SOLUTIONS TO DISCRETE HARMONIC FUNCTIONS IN UNBOUNDED CYLINDERS

  • Fengwen Han;Lidan Wang
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.377-393
    • /
    • 2024
  • In this paper, we study the positive solutions to a discrete harmonic function for a random walk satisfying finite range and ellipticity conditions, killed at the boundary of an unbounded cylinder in ℤd. We first prove the existence and uniqueness of positive solutions, and then establish that all the positive solutions are generated by two special solutions, which are exponential growth at one end and exponential decay at the other. Our method is based on maximum principle and a Harnack type inequality.

A study on the Multibody Dynamics Simulation-based Dynamic Safety Estimation for Installation and Operation of A-Frame in Retrofit Vessel (개조 선박의 A-Frame 설치 및 운용을 위한 다물체 동역학 시뮬레이션 기반 동적 안전성 검토에 관한 연구)

  • Oh, Jaewon;Kim, Hyungwoo;Kwon, Osoon;Kang, Hyoun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.789-798
    • /
    • 2020
  • This paper considers the development of the dynamic analysis model and simulation-based operation safety estimation of A-Frame to be applied to the test evaluation support vessel for real sea test. The support vessel will be manufactured by modifying the existing offshore support vessel. Also, development and installation of various sensors and supporting facilities for test evaluation are under preparation. Among these facilities, A-Frame is an equipment that transfers marine equipment from ship deck to the sea floor, and is being designed to transfer up to 50 ton class equipment. However, the A-Frame is a moving equipment using hydraulic cylinders. When the 50 ton equipment is attached and transferred to A-Frame, the buckling of cylinders may occur or A-Frame becomes inoperable due to the influence of huge inertia. For this reason, safety verification should be performed using dynamic analysis techniques that can take into account huge inertia forces in the design of A-Frame. Therefore, in this study, A-Frame and ship behavior were modeled using dynamic analysis method, and the applied loads of various equipment including hydraulic cylinder of A-Frame was measured and the operation safety review was performed.

Buckling Analysis of Circular Cylinders with Initial Imperfection Subjected to Hydrostatic Pressure (수압을 받는 원통형 실린더의 초기부정을 고려한 좌굴해석)

  • Nho, In Sik;Ryu, Jae Won;Lim, Seung Jae;Cho, Sang Rai;Cho, Yun Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.267-273
    • /
    • 2017
  • Pressure hulls of submerged structures are generally designed as circular cylinders, spheres or cones with form of axisymmetric shell of revolution to withstand the high external pressure of deep ocean. The compressive buckling (implosion) due to hydrostatic pressure is the main concern of structural design of pressure hull and many design codes are provided for it. It is well-known that the buckling behavior of thin shell of revolution is very sensitive to the initial geometric imperfections introduced during the construction process of cutting and welding. Hence, the theoretical solutions for thin shells with perfect geometry often provide much higher buckling pressures than the measured data in tests or real structures and more precise structural analysis techniques are prerequisite for the safe design of pressure hulls. So this paper dealt with various buckling pressure estimation techniques for unstiffened circular cylinder under hydrostatic pressure conditions. The empirical design equations, eigenvalue analysis technique for critical pressure and collapse behaviors of thin cylindrical shells by the incremental nonlinear FE analysis were applied. Finally all the obtained results were compared with those of the pressure chamber test for the aluminium models. The pros and cons of each techniques were discussed and the most rational approach for the implosion of circular cylinder was recommended.

Validity Review of Mixed Convection Flow Regime Map in Vertical Cylinders (수직 원형관내 혼합대류 유동영역지도의 유효성 검토)

  • Kang, Gyeong-Uk;Kim, Hyoung-Jin;Yoon, Si-Tae;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.27-35
    • /
    • 2014
  • The existing flow regime map on mixed convection in vertical cylinders was investigated through an analysis of original literatures and its re-formation. The original literatures related to the existing map were reviewed. Using the investigated data and heat transfer correlations, the map was redrawn independently, and compared with the existing map. The redrawn map showed that mixed convection regime was not curved lines but straight lines and the transition regime was unable to be reproduced. Unlike the existing map with a little data, there are lots of data in the redrawn map. The reviews revealed that the existing map used the data selectively among the experimental and theoretical results, and a detailed description for lines forming mixed convection and transition regime was not provided. While considerable studies on mixed convection have been performed since that of Metais and Eckert, the existing map has still been used as the best method to distinguish natural, forced and mixed convection regime.

Transient Dynamic Stress Analysis of Transversely Isotropic Cylinders Subject to Longitudinal Impact (충격압축하중을 받는 횡등방성 중실축의 과도 동적해석)

  • Oh, Guen;Sim, Woo-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.521-532
    • /
    • 2007
  • Elastic wave propagations in the semi-infinite transversely isotropic cylinder under various kinds of longitudinal impact loads are analyzed using the axisymmetric finite element method and Houbolt time-integration scheme. For which the finite element program is newly constructed and verified through the comparison of present numerical results with those by other researchers. E-type glass-epoxy composite cylinders with different fiber volume fractions are adopted and studied in detail with dynamic responses of the isotropic cylinder. Three dimensional wave motions are given in graphic form to show the realistic view of the wave propagation. Nondimensionalized dynamic characteristic variables which relate the size of finite element mesh, the time step, and the wave speed are presented for obtaining accurate and stable numerical results.

THE EFFECTS OF FABRICATION OF GOLD CYLINDER AND ABUTMENT ON THE FITNESS AND PRELOAD OF THE PROSTHESIS (지대주와 금속 실린더의 종류가 보철물의 적합도 및 preload에 미치는 영향)

  • Ha Jum-Im;Jeong Hoe-Yeol;Kim Yu-Lee;Cho Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.451-465
    • /
    • 2003
  • Statement of problem : Recently various implant components such as premachined gold cylinder, plastic cylinder gold UCLA abutment and plastic abutment were developed and used clinically without clinical investigation. Purpose : The purpose of this study was to evaluate the effects of fabrication of gold cylinder on the fitness and preload of the standard abutment and also the effects of fabrication of UCLA gold abutment on the fitness and stress transfer around the implant fixture. Material and method : Three kinds of gold cylinders such as, as-received gold cylinder (Nobel Biocare, Sweden), gold cylinder after casting, and plastic cylinder after casting with type IV gold alloy were tested over the top of the standard abutment. At the same time, three types of abutments such as, gold UCLA abutment before and after casting, and plastic abutment after casting were tested. The cylinder and abutment was secured over the fixture with conventional pre-load values using an electronic torque controller (Nobel Biocare, Sweden). The fitness of the abutment on the fixture and gold cylinder over the standard abutment were measured using the microhardness tester (MXT 70, Matsuzawa, Japan). Preload and the strain values were recorded using the strain balance unit (SB-10, Measurement group, Raleigh, USA) and strain indicator (P-3500, Measurement group, Raleigh, USA) systems. Results and conclusion : 1. Significant differences were found in the fit between the gold cylinder and plastic cylinder. 2 There were significant differences between the preload of the gold cylinder and that of the plastic cylinder. 3. Significant differences were found in the fit between the gold UCLA abutment and plastic UCLA abutment. 4. There were no significant differences in the stress generated on the supporting structure of the fixture among different cylinder and abutment groups.

Behavior and Optimization of Cylinder Applied by Composite Tape Wrapping Method (복합재/AISI4340 이중구조 후육실린더의 구조적 거동 및 최적화)

  • Lee, Kyeong-Kyoo;Kim, Wie-Dae
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.22-29
    • /
    • 2011
  • To increase the performance of thick-walled cylinders recently their length is continually enlarged. For that reason it is important to reduce weight of the thick-walled cylinders. In this paper the FE models to predict and estimate effects on the composite tapes were created with MSC.Nastran/Patran v.2005. First of all a autofrettage method was applied to the 2D model of the AISI4340 cylinder reduced the thick. And then the comparison of the numerical results with analysis results showed and verified by using T300/5208, IM7/PETI5, IM7/8552 tapes. Those are predicted to the effects of the angle of the composite tapes and elastic modulus according to the composite properties.

Buckling Analysis and Test of Composite Sandwich Cylinder for Underwater Application (수종운동체 적용을 위한 샌드위치 복합재 원통의 좌굴 해석 및 시험)

  • Kim, Ji-Seon;Lee, Gyeong-Chan;Kweon, Jin-Hwe;Cho, Jin-Ho;Cho, Jong-Rae;Cho, Sang-Rae;Cho, Yoon-Sik
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.17-22
    • /
    • 2011
  • In this paper, as a basic research to apply the composite sandwich to underwater vehicle, the manufacturing, analysis and test methods, and weight saving effect of a composite sandwich cylinder under external pressure were studied. A two-step manufacturing method to prevent the wrinkling of the sandwich cylinder face was proposed and the three cylinders were made and tested. Finite element results based on the shell and solid model using MSC.Nastran were compared with test results. The comparison showed that the linear finite element analysis using the shell and solid elements can predict the buckling pressure of the sandwich cylinder with approximately 3% difference. The parametric study of the filament wound cylinders revealed that the composite sandwich can reduce the weight of the cylinder more than 30% compared with the filament wound cylinder supporting the same pressure.