Acknowledgement
The authors would like to thank the anonymous reviewer's careful reading and helpful suggestions to improve the writing of this paper. The authors would like to thank Bobo Hua for helpful discussions and suggestions.
References
- J. Bao, L. Wang, and C. Zhou, Positive solutions to elliptic equations in unbounded cylinder, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 5, 1389-1400. https://doi.org/10.3934/dcdsb.2016001
- M. T. Barlow, Random Walks and Heat Kernels on graphs, London Mathematical Society Lecture Note Series, 438, Cambridge Univ. Press, Cambridge, 2017. https://doi.org/10.1017/9781107415690
- M. Benedicks, Positive harmonic functions vanishing on the boundary of certain domains in ℝn, Ark. Mat. 18 (1980), no. 1, 53-72. https://doi.org/10.1007/BF02384681
- A. Bouaziz, S. Mustapha, and M. Sifi, Discrete harmonic functions on an orthant in ℤd, Electron. Commun. Probab. 20 (2015), no. 52, 13 pp. https://doi.org/10.1214/ecp.v20-4249
- D. Denisov and V. I. Wachtel, Random walks in cones, Ann. Probab. 43 (2015), no. 3, 992-1044. https://doi.org/10.1214/13-AOP867
- J. Doob, Discrete potential theory and boundaries, J. Math. Mech. 8 (1959), 433-458.
- E. Dynkin, The boundary theory of Markov processes (discrete case), Uspehi Mat. Nauk 24 (1969), no. 2, 3-42.
- G. Fayolle, R. Iasnogorodski, and V. Malyshev, Random walks in the quarter-plane, Applications of Mathematics (New York), 40, Springer, Berlin, 1999. https://doi.org/10.1007/978-3-642-60001-2
- S. J. Gardiner, The Martin boundary of NTA strips, Bull. London Math. Soc. 22 (1990), no. 2, 163-166. https://doi.org/10.1112/blms/22.2.163
- M. Ghergu and J. Pres, Positive harmonic functions that vanish on a subset of a cylindrical surface, Potential Anal. 31 (2009), no. 2, 147-181. https://doi.org/10.1007/s11118-009-9129-5
- B. Hua and J. Jost, Lq harmonic functions on graphs, Israel J. Math. 202 (2014), no. 1, 475-490. https://doi.org/10.1007/s11856-014-1089-9
- R. A. Hunt and R. L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507-527. https://doi.org/10.2307/1995208
- H. J. Kuo and N. S. Trudinger, Positive difference operators on general meshes, Duke Math. J. 83 (1996), no. 2, 415-433. https://doi.org/10.1215/S0012-7094-96-08314-3
- G. F. Lawler, Estimates for differences and Harnack inequality for difference operators coming from random walks with symmetric, spatially inhomogeneous, increments, Proc. London Math. Soc. (3) 63 (1991), no. 3, 552-568. https://doi.org/10.1112/plms/s3-63.3.552
- G. F. Lawler, Random walk and the heat equation, Student Mathematical Library, 55, Amer. Math. Soc., Providence, RI, 2010. https://doi.org/10.1090/stml/055
- Y. Lin and H. Song, Harnack and mean value inequalities on graphs, Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 6, 1751-1758. https://doi.org/10.1016/S0252-9602(18)30843-9
- Y. Lin and L. Xi, Lipschitz property of harmonic function on graphs, J. Math. Anal. Appl. 366 (2010), no. 2, 673-678. https://doi.org/10.1016/j.jmaa.2009.12.037
- R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172. https://doi.org/10.2307/1990054
- S. Mustapha, Gaussian estimates for spatially inhomogeneous random walks on ℤd, Ann. Probab. 34 (2006), no. 1, 264-283. https://doi.org/10.1214/009117905000000440
- S. Mustapha, Gambler's ruin estimates for random walks with symmetric spatially inhomogeneous increments, Bernoulli 13 (2007), no. 1, 131-147. https://doi.org/10.3150/07-BEJ5135
- S. Mustapha and M. Sifi, Discrete harmonic functions in Lipschitz domains, Electron. Commun. Probab. 24 (2019), Paper No. 58, 15 pp. https://doi.org/10.1214/19-ecp259
- J. Pres, Positive harmonic functions on comb-like domains, Ann. Acad. Sci. Fenn. Math. 36 (2011), no. 2, 577-591. https://doi.org/10.5186/aasfm.2011.3630
- M. Rigoli, M. Salvatori, and M. Vignati, Subharmonic functions on graphs, Israel J. Math. 99 (1997), 1-27. https://doi.org/10.1007/BF02760674
- L. Wang, The exponential property of solutions bounded from below to degenerate equations in unbounded domains, Acta Math. Sci. Ser. B (Engl. Ed.) 42 (2022), no. 1, 323-348. https://doi.org/10.1007/s10473-022-0118-8
- L. Wang, L. Wang, and C. Zhou, The exponential growth and decay properties for solutions to elliptic equations in unbounded cylinders, J. Korean Math. Soc. 57 (2020), no. 6, 1573-1590. https://doi.org/10.4134/JKMS.j190836
- L. Wang, L. Wang, and C. Zhou, Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders, Commun. Pure Appl. Anal. 20 (2021), no. 3, 1241-1261. https://doi.org/10.3934/cpaa.2021019
- L. Wang, L. Wang, and C. Zhou, The dimensional estimates of exponential growth solutions to uniformly elliptic equations of non-divergence form, Discrete Contin. Dyn. Syst. 42 (2022), no. 11, 5223-5238. https://doi.org/10.3934/dcds.2022092
- L. Wang, L. Wang, C. Zhou, and Z. Li, The behavior and classification of solutions bounded from below to degenerate elliptic equations in unbounded cylinders, J. Math. Anal. Appl. 516 (2022), no. 2, Paper No. 126560, 31 pp. https://doi.org/10.1016/j.jmaa.2022.126560
- W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, 138, Cambridge Univ. Press, Cambridge, 2000. https://doi.org/10.1017/CBO9780511470967