DOI QR코드

DOI QR Code

POSITIVE SOLUTIONS TO DISCRETE HARMONIC FUNCTIONS IN UNBOUNDED CYLINDERS

  • Fengwen Han (School of Mathematics and Statistics Henan University) ;
  • Lidan Wang (School of Mathematical Sciences Jiangsu University)
  • Received : 2023.05.24
  • Accepted : 2024.01.04
  • Published : 2024.03.01

Abstract

In this paper, we study the positive solutions to a discrete harmonic function for a random walk satisfying finite range and ellipticity conditions, killed at the boundary of an unbounded cylinder in ℤd. We first prove the existence and uniqueness of positive solutions, and then establish that all the positive solutions are generated by two special solutions, which are exponential growth at one end and exponential decay at the other. Our method is based on maximum principle and a Harnack type inequality.

Keywords

Acknowledgement

The authors would like to thank the anonymous reviewer's careful reading and helpful suggestions to improve the writing of this paper. The authors would like to thank Bobo Hua for helpful discussions and suggestions.

References

  1. J. Bao, L. Wang, and C. Zhou, Positive solutions to elliptic equations in unbounded cylinder, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 5, 1389-1400. https://doi.org/10.3934/dcdsb.2016001
  2. M. T. Barlow, Random Walks and Heat Kernels on graphs, London Mathematical Society Lecture Note Series, 438, Cambridge Univ. Press, Cambridge, 2017. https://doi.org/10.1017/9781107415690
  3. M. Benedicks, Positive harmonic functions vanishing on the boundary of certain domains in ℝn, Ark. Mat. 18 (1980), no. 1, 53-72. https://doi.org/10.1007/BF02384681
  4. A. Bouaziz, S. Mustapha, and M. Sifi, Discrete harmonic functions on an orthant in ℤd, Electron. Commun. Probab. 20 (2015), no. 52, 13 pp. https://doi.org/10.1214/ecp.v20-4249
  5. D. Denisov and V. I. Wachtel, Random walks in cones, Ann. Probab. 43 (2015), no. 3, 992-1044. https://doi.org/10.1214/13-AOP867
  6. J. Doob, Discrete potential theory and boundaries, J. Math. Mech. 8 (1959), 433-458.
  7. E. Dynkin, The boundary theory of Markov processes (discrete case), Uspehi Mat. Nauk 24 (1969), no. 2, 3-42.
  8. G. Fayolle, R. Iasnogorodski, and V. Malyshev, Random walks in the quarter-plane, Applications of Mathematics (New York), 40, Springer, Berlin, 1999. https://doi.org/10.1007/978-3-642-60001-2
  9. S. J. Gardiner, The Martin boundary of NTA strips, Bull. London Math. Soc. 22 (1990), no. 2, 163-166. https://doi.org/10.1112/blms/22.2.163
  10. M. Ghergu and J. Pres, Positive harmonic functions that vanish on a subset of a cylindrical surface, Potential Anal. 31 (2009), no. 2, 147-181. https://doi.org/10.1007/s11118-009-9129-5
  11. B. Hua and J. Jost, Lq harmonic functions on graphs, Israel J. Math. 202 (2014), no. 1, 475-490. https://doi.org/10.1007/s11856-014-1089-9
  12. R. A. Hunt and R. L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507-527. https://doi.org/10.2307/1995208
  13. H. J. Kuo and N. S. Trudinger, Positive difference operators on general meshes, Duke Math. J. 83 (1996), no. 2, 415-433. https://doi.org/10.1215/S0012-7094-96-08314-3
  14. G. F. Lawler, Estimates for differences and Harnack inequality for difference operators coming from random walks with symmetric, spatially inhomogeneous, increments, Proc. London Math. Soc. (3) 63 (1991), no. 3, 552-568. https://doi.org/10.1112/plms/s3-63.3.552
  15. G. F. Lawler, Random walk and the heat equation, Student Mathematical Library, 55, Amer. Math. Soc., Providence, RI, 2010. https://doi.org/10.1090/stml/055
  16. Y. Lin and H. Song, Harnack and mean value inequalities on graphs, Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 6, 1751-1758. https://doi.org/10.1016/S0252-9602(18)30843-9
  17. Y. Lin and L. Xi, Lipschitz property of harmonic function on graphs, J. Math. Anal. Appl. 366 (2010), no. 2, 673-678. https://doi.org/10.1016/j.jmaa.2009.12.037
  18. R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172. https://doi.org/10.2307/1990054
  19. S. Mustapha, Gaussian estimates for spatially inhomogeneous random walks on ℤd, Ann. Probab. 34 (2006), no. 1, 264-283. https://doi.org/10.1214/009117905000000440
  20. S. Mustapha, Gambler's ruin estimates for random walks with symmetric spatially inhomogeneous increments, Bernoulli 13 (2007), no. 1, 131-147. https://doi.org/10.3150/07-BEJ5135
  21. S. Mustapha and M. Sifi, Discrete harmonic functions in Lipschitz domains, Electron. Commun. Probab. 24 (2019), Paper No. 58, 15 pp. https://doi.org/10.1214/19-ecp259
  22. J. Pres, Positive harmonic functions on comb-like domains, Ann. Acad. Sci. Fenn. Math. 36 (2011), no. 2, 577-591. https://doi.org/10.5186/aasfm.2011.3630
  23. M. Rigoli, M. Salvatori, and M. Vignati, Subharmonic functions on graphs, Israel J. Math. 99 (1997), 1-27. https://doi.org/10.1007/BF02760674
  24. L. Wang, The exponential property of solutions bounded from below to degenerate equations in unbounded domains, Acta Math. Sci. Ser. B (Engl. Ed.) 42 (2022), no. 1, 323-348. https://doi.org/10.1007/s10473-022-0118-8
  25. L. Wang, L. Wang, and C. Zhou, The exponential growth and decay properties for solutions to elliptic equations in unbounded cylinders, J. Korean Math. Soc. 57 (2020), no. 6, 1573-1590. https://doi.org/10.4134/JKMS.j190836
  26. L. Wang, L. Wang, and C. Zhou, Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders, Commun. Pure Appl. Anal. 20 (2021), no. 3, 1241-1261. https://doi.org/10.3934/cpaa.2021019
  27. L. Wang, L. Wang, and C. Zhou, The dimensional estimates of exponential growth solutions to uniformly elliptic equations of non-divergence form, Discrete Contin. Dyn. Syst. 42 (2022), no. 11, 5223-5238. https://doi.org/10.3934/dcds.2022092
  28. L. Wang, L. Wang, C. Zhou, and Z. Li, The behavior and classification of solutions bounded from below to degenerate elliptic equations in unbounded cylinders, J. Math. Anal. Appl. 516 (2022), no. 2, Paper No. 126560, 31 pp. https://doi.org/10.1016/j.jmaa.2022.126560
  29. W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, 138, Cambridge Univ. Press, Cambridge, 2000. https://doi.org/10.1017/CBO9780511470967