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Approximate Interpolator for Direct Fourier

Reconstruction in Diffraction Tomography
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Abstract

In this paper, the interpolation schemes for Direct Fourier Reconstruction in Diffraction
Tomography are discussed. The interpolator using circular sampling theorem is modified so
that the reconstructed image may be closer to original object than those produced with other
interpolators. Reconstructed images obtained by computer simulations with several interpol-
ators including that derived in this paper are compared to original object: two concentric

cylinders.

1. Introduction

The image reconstruction algorithms for
diffraction tomography have been studied for
ten years. In diffraction tomography, infor-
mations of Fourier transform of measured data
are located on the circular arcs in spatial fre-
quency domain according to Fourier Diffrac-
tion projection Theorem [1]. Image recon-
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struction technique with such informations
needs interpolation schemes that interpolate
the values from the circular arcs to points on a
uniform grid to do inverse fast Fourier Trans-

form. There are two fundamental algorithms
for image reconstruction from diffracted
projections: ‘Direct Fourier Reconstruction
Algorithm™ and  “Filtered-Backpropagation

Algorithm® [2-4]), The Filtered-Backpropa-
gation Algorithm derived by Devaney takes
spatial domain interpolation scheme, which
is fundamentally based on the concept of the
Filtered-Backprojection algorithm for X-ray
Tomography. On the other hand, the Direct
Fourier Reconstruction Algorithm takes
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spatial frequency domain interpolation scheme.

With the Direct Fourier Reconstruction
Algorithm, one can obtain the reconstructed
image directly by only doing inverse Fourier
transform of the interpolated informations.
Pan and Kak [2] showed that by the direct
Fourier Reconstruction Algorithm with bilinear
interpolation technique one can obtain re-
constructions of quality which is comparable
to that produced by the Filtered-Backpropa-
gation Algorithm, and computation time is
very much saved also. Many interpolation
schemes have been studied. According to
sampling theorem and circular sampling
theorem and circular sampling theorem, the
band limited signal can be exactly interpolated
from moderately sampled data, But Pan and
KaK obtain the conclusion after their computer
simulation that the bilinear interpolation sheme
is superior to the interpolation scheme using
circular sampling theorem [2]. In this paper,
the interpolator wusing circular sampling

theorem is modified slightly, and the recon-
structed images with such interpolator are
compared to those with several other inter-
polation schemes (e.g. Nearest-Neighbor Inter-
polation, Interpolations using circular sampling
theorem).

II. Coordinate Transformation for Inter-
polation

According to Fourier Diffraction Projection
Theorem, informations of Fourier transform of
diffracted projection data are located on the
semi-circle of radius ko, where ko is the wave
number of incident plane wave, In fig. (1),
space domain and spatial frequency domain
coordinate systems are shown, where « is pro-
jection angle, k is {-directed spatial frequency.

As shown in fig. (1), data obtained by Four-
ier transform of diffracted projection are
represented by (a, K) coordinate system, For
inverse fast Fourier Transform, informations
on the points of uniform grid are needed, and
the grid points are represented by (u,v) carte-
sian coordinate as in fig. (2). Thus, one must
transform the grid points represented by (u,v)
coordinate to (@, K) coordinate, or vice versa.
Transformation equations between (a, K) and
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Fig.1. Coordinate system. a) Space domain

b) Spatial frequence domain,

Fig.2. Circular arcs for various a (dashed
line) and points on the uniform grid
for IFFT (small circles).

(u,v) coordinates are as follows [2], [3].

1) (u,v)~>(a, k)
fork= 0,

u2 +v2
k= kc- sin (2arcsin 4/ ———— )

2ko
[.2 ., .2
a=arctan ¥ +arcsin /% TV (l.a)
u 2k0

and for k <0,

2 2
= —k - sin(2arcsin +/ e )

2k

o
2 .02

a=arctan ¥ —arcsin / 21V (1.b)
21(0

u
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2) (o, k) > (uv)
u= (ko—\/ kg — k2)-sin a+kcosa
v=—(k, =V k:")*kz) . cos & + k-sin a (2)

II. Interpolation Schemes for Direct Fourier
Reconstruction in Diffraction Tomography

Interpolation schemes for X-ray Tomo-
graphy (e.g. Largrange interpolation, Spline
algorithm, Sinc interpolator, etc.) enable us to
obtain nearly exact reconstructed image {5].
In Diffraction Tomography, however, the
locations of the data-known points in the spatial
frequency domain are different to them in
straightpath-like tomography. So the inter-
polation schemes in Diffraction Tomography
are somewhat complicated and the reconstruct-
ed images with them are not satisfiable, too.
Several interpolation schemes have been studied
since the concept of the Direct Fourier Recon-
struction Algorithm for the Diffraction Tomo-
graphy was brought about. The brief descrip-
tion about them is given below 2-4. At first,
the grid point (u,v) at which the value must be
defined is transformed to (o, k) coordinate
according to the transformation equations
(1-a) and (1-b), then, the value at the grid
point, f(u,v), is interpolated from the values at
the points (ai, k.), f(ai, kj), according to the
following equation (3).

N M
flauy), k @v)= T Z H(a(uy), k (u,v);
= =

o, kj) f( o, kj) 3)
where,
(a(u,v), k(u,v)) is transformed (u,v) point,
H(a(u,v), k(u,v); o, kj) is the interpolating
function.
The interpolating function H in(3) is defined as
follows [2],[4].
1) Nearest Neighbor Interpolation

H(a(u,v), k(u,v); o, k) = hy (a—ay).

hg _(k—kj)

i’

4)

where
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hy (a—ai) = 1: abs (a—ai) = min[abs(a—
am);m=1,---, N}
L O : other wise
h, (k—kj) = [1:abs (k——kj)=min [abs
(k—kn); n=1 3y 7T M]
O : other wise

2) Bilinear Interpolation

H(a(u’v)y k(u’v); ai’ kj)=hl (a—a1)~

hy (k—k;) (3)
where,
hye—a)= [1-10% 1 jag <00
Ao

L0 other wise

M -k _k. | =<A
hy (k—k) =1 - Ik k] | k kJ|\pk

nk
0 other wise

s and Ak are the sampling intervals for @ and
k, respectively.

3) Interpolation using the Circular Sampling
Theorem

H(a(u)v)’ k(u ,V); aiy kj)

=h, (a—ai)~ hz(k—kj) 6)
where,

i (ﬂ(a—a))
hy (a—o)= — 2L

Nsin(a _ O‘j )
2

™ K-k
2k, 1

h, (k—kj) = sinc (

If N is even number, h; (a—ai) in (6) is
corrected as (7)[6].

sin (- (@)
22%5) (7)

h, (a—ai) = cos { ——

Nsin (a_—2—a_i_)

In this section, N is a total of projections
and M is a number of sample points for each
projection,
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IV. Approximate Interpolator using sampling
Theorem

With the transformation equation (2), the
data-known points (ai, k.) on the circular arcs
are transformed to (u,v) coordinate. Then the
value at the grid point, f(uk, vQ), is inter-
polated from the values at the points on the
circular arcs, f (ai, k;). With full angle projec-
tions the circular arcs are overlapped. If only
the quadrants (i.e. k <0, or K 220) are selected
for interpolation, as shown in fig, (3), the data-
known points are spaced uniformly along the
circle of which the center is (0,0) and unequally
along the radial direction. That is, let (ug ij)
represent the transformed point of o k; and
(R ¢..) be its polar coordinate descnptlon
then (3 —¢(1 1 j) is constant for all i, but

(R].J Ri(]—l) ) is dependent upon j.

Fig. 3. Allocation of data-known points(x)
for derivation of approximate inter-
polator.

For applying the sampling theorem, the
Radial direction sampling interval AR was
approximated as (8)

(8)
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where, R =4/ u:l"(+v;22

(uy, vQ) is the grid point B in fig. (3).

The circular sampling interval, on the other
hand, is uniformly ¢ =N 27, where N is the
number of projections. The angular distance
between the two points (uk, v ) and (u v, )
is given as %U = |¢—¢ l, where o= arctan
(Vo/Up).

Then the approximate interpolator using
sampling theorem can be represented as (9).

19874

H(uk,VQ U VU) =H(R, ¢;Rij’ ¢ii )
= B (RRPM;(6,0) (9
where,
IN(R-R..
hy (R,Ry) = sinc ( (TrR—lL)
i
(¢ —9..
Ry ($ , 35) = sinc ( f¢%)

In (9),
approximately given as
polator hy (¢, ¢;5).

The computational procedure for recon-
structing an image from diffracted projections
with approximate interpolator (9) may be
presented in the form of the following steps.

step I, obtain the projection data. Com-
puter simulations in V were performed with
the projection data obtained from first order
Bessel function, Fourier transform of cylinder
function,

step 2. coordinate  transformation, (ai,
k.) on circular arcs and (U, VQ) on uniform
grid are transformed to polar coordinates
(Rii’ ¢ij) and (R, @), respectively,

step 3. determine the
ARﬁ, O according to (8).

step 4. calculate the interpolated value
with approximate interpolator (9).

step 5. reconstruct the image by doing
inverse fast Fourier transform with the inter-
polated value obtained in step 4.

the usual sampling function was
the circular inter-

sampling interval

V. Results of Computer Simulation

The interpolators in this paper are tested
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Fig. 4. Computer simulation results, a),c), e) and g) are 32X 32 reconstruction images;b),d), f) and
h) are numerical comparisons of the true and reconstructed values on the center line through
the object (solid line represents the reconstructed values and dotted line the true values).
a) and b) with nearest neighbor interpolation, c) and d) with interpolator using circular sampling
theorem. e) and f) with corrected interpolator using sampling theorem, g) and h) with approxi-
mate interpolator using sampling theorem,
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by computer simulation. A coaxial cable-
shaped object was chosen as that to be recon-
structed.

The ratio of the object size to the wave
length of the incident wavelength was assumed
4. Each of 32 projections were used. Only the
half of the sampled points (i.e. K= 0) were
need for interpolation to prevent the circular
arcs from overlap.

Computer simulation results are shown in
fig. (4). Shown in figs. (4a), (4¢), (4e), and (4g)
are 32x32 reconstruction images and in figs.
(4b), (4d), (4h) and (4f) numerical comparisons
of true and reconstructed values on the center-
line through the original object.

In fig. (4), all of the reconstructions and the
numerical values are only the real parts of
inverse Fast Fourier Transform of interpolated
values. The imaginary parts are all below 1072,
Results in figs. (4c), and (4d) are obtained with
interpolator using circular sampling theorem as
(6). Results in figs. (4e) and (4f) are same as
in figs. (4c¢) and (4d) except that circular inter-
polator hy (a), in (6) is corrected as (7).

Comparing results in fig. (4), one can see
that results obtained with the approximate
interpolator (8) using sampling theorem (figs.
(4g) and (4h) ) are the closet to original object
among them, Mean Square Error (MSE) in each
case is as follows :G.1511 in figs. (4a) and (4b),
0.1145 in figs. (4c) and (4d), 0.1133 in figs.
(4¢) and (4f), and 0.0996 in figs. (4g) and (4h)
the smallest value.

In the case of noisy data, the fact causes
SNR to be down that interpolation with the
approximate interpolator in this paper is per-
formed using only the half of the sample
points. But SNR can be compensated by e.g.
arithmatic mean of interpolated data using
two data sets respectively, since the half of
the sample points unused are allocated in
exactly the same pattern with the other half
used in interpolation.

VI. Conclusions

Several interpolation schemes for Direct

1987 18 WTTIBERLE £ 4% % 18

Fourier Reconstruction Algorithm in Diffrac-
tion Tomography were briefly discussed.
Using the sampling theorem, Approximate
Interpolator was derived in this paper.
Computer simulations were performed with
those interpolators, and results of reconstruc-
tions, numerical values, and mean square errors
were obtained. Comparing computer simula-
tion results, we can conclude that in the
respects of displayed image, numerical values
and MSE are the results obtained with Approxi-
mate Interpolator using sampling theorem more
satisfiable than those with other interpolators.
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