• Title/Summary/Keyword: coupling efficiency

Search Result 650, Processing Time 0.024 seconds

Analysis and Optimization of Wireless Power Transfer Efficiency Considering the Tilt Angle of a Coil

  • Huang, Wei;Ku, Hyunchul
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.13-19
    • /
    • 2018
  • Wireless power transfer (WPT) based on magnetic resonant coupling is a promising technology in many industrial applications. Efficiency of the WPT system usually depends on the tilt angle of the transmitter or the receiver coil. This work analyzes the effect of the tilt angle on the efficiency of the WPT system with horizontal misalignment. The mutual inductance between two coils located at arbitrary positions with tilt angles is calculated using a numerical analysis based on the Neumann formula. The efficiency of the WPT system with a tilted coil is extracted using an equivalent circuit model with extracted mutual inductance. By analyzing the results, we propose an optimal tilt angle to maximize the efficiency of the WPT system. The best angle to maximize the efficiency depends on the radii of the two coils and their relative position. The calculated efficiencies versus the tilt angle for various WPT cases, which change the radius of RX ($r_2=0.075m$, 0.1 m, 0.15 m) and the horizontal distance (y=0 m, 0.05 m, 0.1 m), are compared with the experimental results. The analytically extracted efficiencies and the extracted optimal tilt angles agree well with those of the experimental results.

Experimental Studies on the Performance of the Active Phased-Array. Antenna Coupled by Transmission Line (전송선로로 결합된 능동 위상차배열 안테나의 동작특성에 관한 실험적 연구)

  • 최영규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.175-181
    • /
    • 2004
  • In order to increase the coupling efficiency of the Power and Phase of the active Phase way antenna, we have fabricated the active phased-array antenna which is coupled by the transmission line, and investigated the relationship between the length of the coupling transmission line and coupling power and phase. The following three types of driving method -(1) giving the frequency difference between the two active antenna, (2) applying the input signal to the one side of the two antennas, and changing the eigen frequency of the other side antenna, (3) appling the different phase inputs to the active antennas was investigated. The experimental results showed that the interval of the antenna elements has not affected the power and the phase of the antenna.

Wireless Power Transmission using Electromagnetic Inductive Coupling and LC Resonant (자기유도방식과 LC공진을 이용한 무선전력전송기기)

  • Lee, Seung-Hwan;Kimm, Hyoen-Min;Kim, Hee-Je;Kim, Su-Weon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.349-354
    • /
    • 2013
  • Wireless power transmission introduced by Tesla has instrumented by many scientists of the world. This technique first was utilized as wireless communications such as radio in long range transmission. And contactless transmission using inductive property was used on white goods. In 2007, MIT' lab introduced that new wireless power transmission by magnetic resonance which has about 50% efficiency and 2M transmission distances, it was a chance to refocus a new possibility of wireless power transmission. In this paper, using LC coupling compensate the short distances of contactless transmission, this simple method could transmit about 30cm distances. Using this approach, it can be solved the short transmission distances, a drawback of Electromagnetic inductive coupling method.

Development of Staggered Grip Type Coupling for Improving the Workability in Reinforcing Bar (철근공사 작업성 향상을 위한 엇물림 그립 타입의 이음장치 개발)

  • Woo, Jong-Yeol;Hong, Seong-Wook;Yang, Jin-Kook;Park, Seung-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.295-297
    • /
    • 2013
  • Reinforcing bar coupling method has a variety of ways including lap-splice method. However, there are problems that need to be improved in terms of constructability, economics analysis. We should be improved about the problems of the existing methods. Accordingly, this study were developed a new type of staggered grip type reinforcing bar coupling. The proposed method show the following effects than existing methods. First, this method can be reduce time through improved workability. Second, increasing safety through the slip removal. Third, improving economic efficiency by reduce the manufacturing costs.

  • PDF

Syntheses of Mannosidic Disaccharides from Derivatives of Ethylthio $\alpha$-D-Mannopyranoside

  • 윤미경;신영숙;윤신숙;전근호;Shin, Jeong E. Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1239-1244
    • /
    • 1998
  • Derivatives of ethylthio α-D-mannopyranoside as glycosyl donors are compared in coupling efficiency and stercoselectivity with varying thiophilic promoters from methyl triflate (MeOTf), dimethyl(methylthio)sulfonium triflate (DMTST) to iodonium dicollidine perchlorate (IDCP), solvents and glycosyl acceptors. IDCP was the most efficient promoter in coupling of perbenzylated ethylthio-α-D-mannopyranosides (1 and 2), giving α-Dmannosyl disaccharides preferentially, whereas inactive in coupling of 4,6-O-benzylidene derivatives 3 and 4. MeOTf and DMTST promoted coupling of 4,6-O-benzylidene derivatives 3 and 4, but P-D-mannopyranosyl disaccharides were formed preferentially. Coupling reaction was retarded as solvent polarity decreased.

Side-Coupled Asymmetric Plastic Optical Fiber Coupler for Optical Sensor Systems

  • Kim, Kwang-Taek;Kim, Deok-Gi;Hyun, Woong-Keun;Hong, Ki-Bum;Im, Kie-Gon;Baik, Se-Jong;Kim, Dae-Kyong;Choi, Hyun-Yong
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.255-261
    • /
    • 2008
  • This paper reports a side-coupled asymmetric $1{\times}2$ plastic optical fiber coupler for an optical sensor system. The dependence of the optical power coupling ratio on the coupling angle and refractive index of the adhesion layer in both the forward and backward directions was examined based on the geometrical optics. It was confirmed experimentally that the coupling ratios can be optimized by controlling the coupling angle and refractive index of the adhesion layer. A maximum forward coupling efficiency > 93% was achieved.

A Study on the Selection of Grinding Conditions and Evaluation for Curvic Coupling Tooth Machining (Curvic Coupling Tooth 가공의 연삭 조건 선정 및 가공면 평가에 관한 연구)

  • Hur, Du-Kwon;Kim, Myung-Hyun;Kim, Chan Kyu;Jeong, Young Cheol;Jung, Yoon Gyo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.87-92
    • /
    • 2018
  • As gas turbines for power generation become increasingly more important for high capacity and high efficiency, the technological development and investment of companies are increasing globally. Gas turbine manufacturing technology is only owned by a few companies such as GE, Siemens, and MHI, and our country currently depends on imports of processing technology and component parts. The core part of the gas turbine is curvic coupling tooth processing technology that improves turbine efficiency by smoothly transmitting power to the turbine rotor. Curvic coupling tooth machining and evaluation research is restricted overseas, and it is not underway in Korea. Therefore, in this study, roughing and finishing process technology for curvic coupling tooth machining is developed and a quantitative evaluation method is proposed. For the development of machining technology, the analysis of critical parameters was performed through C & E analysis. In the roughing process, the conditions considering the minimum machining time and tool load ratio were determined. Finishing process conditions were determined based on the contact ratio between the tooth surfaces. The image-processing method is presented for evaluation of the contact ratio and a verification test was performed.

Comparison of Magnetic Resonant Coupling Wireless Power Transfer Systems within Aligned and Unaligned Positions and Determining their Limits

  • Agcal, Ali;Bekiroglu, Nur;Ozcira, Selin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.652-659
    • /
    • 2016
  • In this study, the efficiencies for both the angular aligned and unaligned positions of the receiver and transmitter coils of wireless power transfer (WPT) systems are examined. Some parameters of the equivalent circuit were calculated with Maxwell 3D software. The analytical solution of the circuit was calculated in MATLAB program through the composition of the system's mathematical modeling. The numerical solution of the system, however, was calculated using PSIM, which is circuit simulation software. In addition, with the use of the finite element method (FEM) in Maxwell 3D software, transient analysis of the three-dimensional system was performed. The efficiency of the system was estimated through the calculation of input and output power. The results demonstrated that power was efficiently transmitted to a certain extent in aligned and unaligned positions. The results also revealed that, for aligned positions, high efficiency with air gaps of 15-20 cm can be obtained and that the efficiency quickly dropped with air gaps of more than 20 cm. For spatially unaligned positions, it was observed that wireless power transfer could be realized with high efficiency with air gaps of up to 10 cm and that efficiency quickly dropped with air gaps of more than 10 cm.

A Feedback Circuit of Effective Wireless Power Transfer for Low Power System

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.480-483
    • /
    • 2018
  • Wireless power transfer (WPT) is the technology that forces the power to transmit electromagnetic field to an electrical load through an air gap without interconnecting wires. This technology is widely used for the applications from low power smartphone to high power electric railroad. In this paper, the model of wireless power transfer circuit for the low power system is designed for a resonant frequency of 13.45 MHz. Also, a feedback WPT circuit to improve the power transfer efficiency is proposed and shown better performance than the original open WPT circuit, and the methodology for power efficiency improvement is studied as the coupling coefficient increases above 0.01, at which the split frequency is made.

결합된 자기공명을 통한 무선에너지 전력 전송 시스템의 회로 해석

  • Jeon, Sang-Hun;Kim, Yong-Hae;Lee, Myeong-Rae;Gang, Seung-Yeol
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.405-407
    • /
    • 2010
  • Simple equivalent circuit model is developed for wireless energy transfer system via coupled magnetic resonances and practical design method is also provided. Node equations for the resonance system are built with the method expanding transformer's equations and the optimum distances of coils in the system is derived analytically for optimum coupling coefficients for high transfer efficiency. Moreover, to calculate the frequency characteristics for a lossy system the equivalent model is established at an electric design automation tool. The model parameters of the actual system are extracted and the results of modeling are compared with the measurement. Through the developed model, we can understand the principles that the system shows higher efficiency than conventional magnetic coupling systems and impedance matching is important to achieve high efficiency.

  • PDF