• Title/Summary/Keyword: convex and starlike functions

Search Result 103, Processing Time 0.03 seconds

Suffciency Conditions for Hypergeometric Functions to be in a Subclasses of Analytic Functions

  • Aouf, Mohamed Kamal;Mostafa, Adela Osman;Zayed, Hanaa Mousa
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.235-248
    • /
    • 2016
  • The purpose of this paper is to introduce sufficient conditions for (Gaussian) hypergeometric functions to be in various subclasses of analytic functions. Also, we investigate several mapping properties involving these subclasses.

SUBORDINATION AND SUPERORDINATION IMPLICATIONS ASSOCIATED WITH A CLASS OF NONLINEAR INTEGRAL OPERATORS

  • SEON HYE AN;NAK EUN CHO
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.3_4
    • /
    • pp.223-236
    • /
    • 2023
  • In the present paper, we investigate the subordination and superordination implications for a class of certain nonlinear integral operators defined on the space of normalized analytic functions in the open unit disk. The sandwich-type theorem for these integral operators is also presented. Further, we extend some results given earlier as special cases of the main results presented here.

Sharp Coefficient Bounds for the Quotient of Analytic Functions

  • Park, Ji Hyang;Kumar, Virendra;Cho, Nak Eun
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.231-242
    • /
    • 2018
  • We derive sharp upper bound on the initial coefficients and Hankel determinants for normalized analytic functions belonging to a class, introduced by Silverman, defined in terms of ratio of analytic representations of convex and starlike functions. A conjecture related to the coefficients for functions in this class is posed and verified for the first five coefficients.

SUFFICIENT CONDITIONS FOR UNIVALENCE OF A GENERAL INTEGRAL OPERATOR

  • Selvaraj, Chellian;Karthikeyan, Kadhavoor Ragavan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.367-372
    • /
    • 2009
  • In this paper, univalence of a certain integral operator and some interesting properties involving the integral operators on the classes of complex order are obtained. Relevant connections of the results, which are presented in this paper, with various other known results are also pointed out.

RADII PROBLEMS OF CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS WITH FIXED SECOND COEFFICIENTS

  • PORWAL, SAURABH;BULUT, SERAP
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.317-323
    • /
    • 2015
  • The purpose of the present paper is to study certain radii problems for the function $$f(z)=\[{\frac{z^{1-{\gamma}}}{{\gamma}+{\beta}}}\(z^{\gamma}[D^nF(z)]^{\beta}\)^{\prime}\]^{1/{\beta}}$$, where ${\beta}$ is a positive real number, ${\gamma}$ is a complex number such that ${\gamma}+{\beta}{\neq}0$ and the function F(z) varies various subclasses of analytic functions with fixed second coefficients. Relevant connections of the results presented herewith various well-known results are briefly indicated.

REGIONS OF VARIABILITY FOR GENERALIZED α-CONVEX AND β-STARLIKE FUNCTIONS, AND THEIR EXTREME POINTS

  • Chen, Shaolin;Huang, Aiwu
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.557-569
    • /
    • 2010
  • Suppose that n is a positive integer. For any real number $\alpha$($\beta$ resp.) with $\alpha$ < 1 ($\beta$ > 1 resp.), let $K^{(n)}(\alpha)$ ($K^{(n)}(\beta)$ resp.) be the class of analytic functions in the unit disk $\mathbb{D}$ with f(0) = f'(0) = $\cdots$ = $f^{(n-1)}(0)$ = $f^{(n)}(0)-1\;=\;0$, Re($\frac{zf^{n+1}(z)}{f^{(n)}(z)}+1$) > $\alpha$ (Re($\frac{zf^{n+1}(z)}{f^{(n)}(z)}+1$) < $\beta$ resp.) in $\mathbb{D}$, and for any ${\lambda}\;{\in}\;\bar{\mathbb{D}}$, let $K^{(n)}({\alpha},\;{\lambda})$ $K^{(n)}({\beta},\;{\lambda})$ resp.) denote a subclass of $K^{(n)}(\alpha)$ ($K^{(n)}(\beta)$ resp.) whose elements satisfy some condition about derivatives. For any fixed $z_0\;{\in}\;\mathbb{D}$, we shall determine the two regions of variability $V^{(n)}(z_0,\;{\alpha})$, ($V^{(n)}(z_0,\;{\beta})$ resp.) and $V^{(n)}(z_0,\;{\alpha},\;{\lambda})$ ($V^{(n)}(z_0,\;{\beta},\;{\lambda})$ resp.). Also we shall determine the extreme points of the families of analytic functions which satisfy $f(\mathbb{D})\;{\subset}\;V^{(n)}(z_0,\;{\alpha})$ ($f(\mathbb{D})\;{\subset}\;V^{(n)}(z_0,\;{\beta})$ resp.) when f ranges over the classes $K^{(n)}(\alpha)$ ($K^{(n)(\beta)$ resp.) and $K^{(n)}({\alpha},\;{\lambda})$ ($K^{(n)}({\beta},\;{\lambda})$ resp.), respectively.

On Applications of Differential Subordination to Certain Subclass of Multivalent Functions

  • Aghalary, Rasoul;Wang, Zhi-Gang
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.2
    • /
    • pp.265-281
    • /
    • 2009
  • In the present paper, we introduce and investigate a new subclass of multivalent functions associated with the Cho-Kwon-Srivastava operator $\tau^{\lambda}_p(a,c)$. Such results as inclusion relationships, convolution properties and criteria for starlikeness are proved. Relevant connections of the results presented here with those obtained in earlier works are also pointed out.

SHARP ESTIMATES ON THE THIRD ORDER HERMITIAN-TOEPLITZ DETERMINANT FOR SAKAGUCHI CLASSES

  • Kumar, Sushil;Kumar, Virendra
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1041-1053
    • /
    • 2022
  • In this paper, sharp lower and upper bounds on the third order Hermitian-Toeplitz determinant for the classes of Sakaguchi functions and some of its subclasses related to right-half of lemniscate of Bernoulli, reverse lemniscate of Bernoulli and exponential functions are investigated.

ON GEOMETRIC PROPERTIES OF THE MITTAG-LEFFLER AND WRIGHT FUNCTIONS

  • Das, Sourav;Mehrez, Khaled
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.949-965
    • /
    • 2021
  • The main focus of the present paper is to present new set of sufficient conditions so that the normalized form of the Mittag-Leffler and Wright functions have certain geometric properties like close-to-convexity, univalency, convexity and starlikeness inside the unit disk. Interesting consequences and examples are derived to support that these results are better than the existing ones and improve several results available in the literature.

ON A FIRST ORDER STRONG DIFFERENTIAL SUBORDINATION AND APPLICATION TO UNIVALENT FUNCTIONS

  • Aghalary, Rasoul;Arjomandinia, Parviz
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.445-454
    • /
    • 2022
  • Using the concept of the strong differential subordination introduced in [2], we find conditions on the functions θ, 𝜑, G, F such that the first order strong subordination θ(p(z)) + $\frac{G(\xi)}{\xi}$zp'(z)𝜑(p(z)) ≺≺ θ(q(z)) + F(z)q'(z)𝜑(q(z), implies p(z) ≺ q(z), where p(z), q(z) are analytic functions in the open unit disk 𝔻 with p(0) = q(0). Corollaries and examples of the main results are also considered, some of which extend and improve the results obtained in [1].