DOI QR코드

DOI QR Code

REGIONS OF VARIABILITY FOR GENERALIZED α-CONVEX AND β-STARLIKE FUNCTIONS, AND THEIR EXTREME POINTS

  • Chen, Shaolin (DEPARTMENT OF MATHEMATICS HUNAN NORMAL UNIVERSITY) ;
  • Huang, Aiwu (DEPARTMENT OF MATHEMATICS HUNAN UNIVERSITY OF CHINESE MEDICINE)
  • Received : 2008.10.16
  • Published : 2010.10.31

Abstract

Suppose that n is a positive integer. For any real number $\alpha$($\beta$ resp.) with $\alpha$ < 1 ($\beta$ > 1 resp.), let $K^{(n)}(\alpha)$ ($K^{(n)}(\beta)$ resp.) be the class of analytic functions in the unit disk $\mathbb{D}$ with f(0) = f'(0) = $\cdots$ = $f^{(n-1)}(0)$ = $f^{(n)}(0)-1\;=\;0$, Re($\frac{zf^{n+1}(z)}{f^{(n)}(z)}+1$) > $\alpha$ (Re($\frac{zf^{n+1}(z)}{f^{(n)}(z)}+1$) < $\beta$ resp.) in $\mathbb{D}$, and for any ${\lambda}\;{\in}\;\bar{\mathbb{D}}$, let $K^{(n)}({\alpha},\;{\lambda})$ $K^{(n)}({\beta},\;{\lambda})$ resp.) denote a subclass of $K^{(n)}(\alpha)$ ($K^{(n)}(\beta)$ resp.) whose elements satisfy some condition about derivatives. For any fixed $z_0\;{\in}\;\mathbb{D}$, we shall determine the two regions of variability $V^{(n)}(z_0,\;{\alpha})$, ($V^{(n)}(z_0,\;{\beta})$ resp.) and $V^{(n)}(z_0,\;{\alpha},\;{\lambda})$ ($V^{(n)}(z_0,\;{\beta},\;{\lambda})$ resp.). Also we shall determine the extreme points of the families of analytic functions which satisfy $f(\mathbb{D})\;{\subset}\;V^{(n)}(z_0,\;{\alpha})$ ($f(\mathbb{D})\;{\subset}\;V^{(n)}(z_0,\;{\beta})$ resp.) when f ranges over the classes $K^{(n)}(\alpha)$ ($K^{(n)(\beta)$ resp.) and $K^{(n)}({\alpha},\;{\lambda})$ ($K^{(n)}({\beta},\;{\lambda})$ resp.), respectively.

Keywords

Acknowledgement

Supported by : NSFs of China, NCET

References

  1. Y. Abu-Muhanna and T. H. MacGregor, Extreme points of families of analytic functions subordinate to convex mappings, Math. Z. 176 (1981), no. 4, 511–519. https://doi.org/10.1007/BF01214761
  2. P. L. Duren, Univalent Function, Grundlehren der mathematicchen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo, Spring-Verlag, 1983.
  3. A. W. Goodman, Univalent Functions, Vols. I and II, Mariner Publishing Co., Tampa, Florida, 1983.
  4. D. J. Hallenbeck, Extreme points of classes of functions defined by subordination, Proc. Amer. Math. Soc. 46 (1974), 59–64.
  5. D. J. Hallenbeck and A. E. Livingston, Applications of extreme point theory to classes of multivalent functions, Trans. Amer. Math. Soc. 221 (1976), no. 2, 339–359.
  6. Ch. Pommerenke, Boundary Behaviour of Conform Maps, Springer-Verlag, Berlin, 1992.
  7. S. Ponnusamy, Foundations of Functional Analysis, Alpha Science International Ltd., Pangbourne, 2002.
  8. S. Ponnusamy and H. Silverman, Complex Variables with Applications, Birkhauser, Boston, 2006.
  9. S. Ponnusamy and V. Singh, Univalence of certain integral transforms, Glas. Mat. Ser. III 31(51) (1996), no. 2, 253–261.
  10. S. Ponnusamy and A. Vasudevarao, Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl. 332 (2007), no. 2, 1323–1334. https://doi.org/10.1016/j.jmaa.2006.11.019
  11. S. Ponnusamy, A. Vasudevarao, and H. Yanagihara, Region of variability of univalent functions f(z) for which zf'(z) is spirallike, Houston J. Math. 34 (2008), no. 4, 1037–1048.
  12. J. Vaisala, Uniform domains, Tohoku Math. J. (2) 40 (1988), no. 1, 101–118. https://doi.org/10.2748/tmj/1178228081
  13. X. Wang, M. Huang, and Y. Chu, Bounded and convex domains in Rn, Acta Math. Sinica (Chin. Ser.) 50 (2007), no. 3, 481–484.
  14. H. Yanagihara, Regions of variability for functions of bounded derivatives, Kodai Math. J. 28 (2005), no. 2, 452–462.