• Title/Summary/Keyword: convex and starlike functions

Search Result 103, Processing Time 0.033 seconds

SOME EXTENSION RESULTS CONCERNING ANALYTIC AND MEROMORPHIC MULTIVALENT FUNCTIONS

  • Ebadian, Ali;Masih, Vali Soltani;Najafzadeh, Shahram
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.911-927
    • /
    • 2019
  • Let $\mathscr{B}^{{\eta},{\mu}}_{p,n}\;({\alpha});\;({\eta},{\mu}{\in}{\mathbb{R}},\;n,\;p{\in}{\mathbb{N}})$ denote all functions f class in the unit disk ${\mathbb{U}}$ as $f(z)=z^p+\sum_{k=n+p}^{\infty}a_kz^k$ which satisfy: $$\|\[{\frac{f^{\prime}(z)}{pz^{p-1}}}\]^{\eta}\;\[\frac{z^p}{f(z)}\]^{\mu}-1\| <1-{\frac{\alpha}{p}};\;(z{\in}{\mathbb{U}},\;0{\leq}{\alpha}<p)$$. And $\mathscr{M}^{{\eta},{\mu}}_{p,n}\;({\alpha})$ indicates all meromorphic functions h in the punctured unit disk $\mathbb{U}^*$ as $h(z)=z^{-p}+\sum_{k=n-p}^{\infty}b_kz^k$ which satisfy: $$\|\[{\frac{h^{\prime}(z)}{-pz^{-p-1}}}\]^{\eta}\;\[\frac{1}{z^ph(z)}\]^{\mu}-1\|<1-{\frac{\alpha}{p}};\;(z{\in}{\mathbb{U}},\;0{\leq}{\alpha}<p)$$. In this paper several sufficient conditions for some classes of functions are investigated. The authors apply Jack's Lemma, to obtain this conditions. Furthermore, sufficient conditions for strongly starlike and convex p-valent functions of order ${\gamma}$ and type ${\beta}$, are also considered.

INCLUSION RELATIONS AND RADIUS PROBLEMS FOR A SUBCLASS OF STARLIKE FUNCTIONS

  • Gupta, Prachi;Nagpal, Sumit;Ravichandran, Vaithiyanathan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1147-1180
    • /
    • 2021
  • By considering the polynomial function 𝜙car(z) = 1 + z + z2/2, we define the class 𝓢*car consisting of normalized analytic functions f such that zf'/f is subordinate to 𝜙car in the unit disk. The inclusion relations and various radii constants associated with the class 𝓢*car and its connection with several well-known subclasses of starlike functions is established. As an application, the obtained results are applied to derive the properties of the partial sums and convolution.

CONVOLUTION PROPERTIES FOR GENERALIZED PARTIAL SUMS

  • Silberman, Herb
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.601-607
    • /
    • 1996
  • For functions $f(z) = \sum_{n = 0}^{\infty}a_n z^n$ and $g(z) = \sum_{n = 0}^{\infty} b_n z^n$ analytic in the unit disk $\Delta = {z : $\mid$z$\mid$ < 1}$, the convolution $f * g$ is defined by $(f * g)(z) = \sum_{n = 0}^{\infty}a_n b_n z^n$. Let S denote the family of functions $f(z) = z + \cdots$ analytic and univalent in $\Delta$ and K, St, C the subfamilies that are respectively convex, starlike, and close-to-convex.

  • PDF

On a Class of Univalent Functions Defined by Ruscheweyh Derivatives

  • SHAMS, S.;KULKARNI, S.R.;JAHANGIRI, JAY M.
    • Kyungpook Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.579-585
    • /
    • 2003
  • A new class of univalent functions is defined by making use of the Ruscheweyh derivatives. We provide necessary and sufficient coefficient conditions, extreme points, integral representations, distortion bounds, and radius of starlikeness and convexity for this class.

  • PDF

ANALYTIC FUNCTIONS WITH CONIC DOMAINS ASSOCIATED WITH CERTAIN GENERALIZED q-INTEGRAL OPERATOR

  • Om P. Ahuja;Asena Cetinkaya;Naveen Kumar Jain
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1111-1126
    • /
    • 2023
  • In this paper, we define a new subclass of k-uniformly starlike functions of order γ (0 ≤ γ < 1) by using certain generalized q-integral operator. We explore geometric interpretation of the functions in this class by connecting it with conic domains. We also investigate q-sufficient coefficient condition, q-Fekete-Szegö inequalities, q-Bieberbach-De Branges type coefficient estimates and radius problem for functions in this class. We conclude this paper by introducing an analogous subclass of k-uniformly convex functions of order γ by using the generalized q-integral operator. We omit the results for this new class because they can be directly translated from the corresponding results of our main class.

MITTAG LEFFLER FUNCTIONS ASSOCIATED WITH FUNCTIONS THAT MAP OPEN UNIT DISC ONTO A SECTOR OF THE RIGHT-HALF PLANE

  • AFIS SALIU;KANWAL JABEEN;SEMIU OLADIPUPO OLADEJO;OLAIDE YETUNDE SAKA-BALOGUN
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.937-946
    • /
    • 2023
  • In this present work, we inaugurated subclasses of analytic functions which are associated with generalized Mittag Leffler Functions. Inclusion implications and integral preserving properties under the Bernardi integral operator are investigated. Some consequences of these findings are also illustrated.

THE HARDY SPACE OF RAMANUJAN-TYPE ENTIRE FUNCTIONS

  • Erhan Deniz;Murat Caglar
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.71-81
    • /
    • 2023
  • In this paper, we deal with some geometric properties including starlikeness and convexity of order 𝛽 of Ramanujan-type entire functions which are natural extensions of classical Ramanujan entire functions. In addition, we determine some conditions on the parameters such that the Ramanujan-type entire functions belong to the Hardy space and to the class of bounded analytic functions.

SOME NEW INTEGRAL MEANS INEQUALITIES AND INCLUSION PROPERTIES FOR A CLASS OF ANALYTIC FUNCTIONS INVOLVING CERTAIN INTEGRAL OPERATORS

  • Raina, R.K.;Bansal, Deepak
    • East Asian mathematical journal
    • /
    • v.24 no.4
    • /
    • pp.347-358
    • /
    • 2008
  • In this paper we investigate integral means inequalities for the integral operators $Q_{\lambda}^{\mu}$ and $P_{\lambda}^{\mu}$ applied to suitably normalized analytic functions. Further, we obtain some neighborhood and inclusion properties for a class of functions $G{\alpha}({\phi}, {\psi})$ (defined below). Several corollaries exhibiting the applications of the main results are considered in the concluding section.

  • PDF