CONVOLUTION PROPERTIES FOR GENERALIZED PARTIAL SUMS

HERE SILVERMAN

1. Introduction

For functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ analytic in the unit disk $\Delta = \{z : |z| < 1\}$, the convolution f * g is defined by $(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n$. Let S denote the family of functions $f(z) = z + \cdots$ analytic and univalent in Δ and K, St, C the subfamilies that are respectively convex, starlike, and close to-convex.

To a finite or infinite increasing sequence of integers $\{n_k\}$ with $n_k \ge k$ and a function $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ analytic in Δ we associate the function \hat{f} .

$$\tilde{f}(z) = z + \sum_{k=2}^{\infty} a_{n_k} z^{n_k} = \left(z + \sum_{k=2}^{\infty} z^{n_k}\right) * f(z),$$

called a generalized partial sum of the function f. In the special case that $\{n_k\}$ is the finite sequence $n_k = k \ (k = 2, 3, \dots, N)$ we get the Nth section of f, $\tilde{f}(z) = f_N(z) = \left(z + \sum_{k=2}^N z^k\right) * f(z)$.

Szegő in [6] showed that the Nth section of functions in S, St, or K are respectively univalent, starlike, or convex in the disk |z| < 1/4. In each case, a function of the form $f_2(z) = z + a_2 z^2$ shows that the value 1/4 cannot be increased. For the generalized partial sum \tilde{f} , the value 1/4 may be replaced with the constant $c \approx 0.20936$, the root in (0,1) of the polynomial equation

(1)
$$(1-x^2)^3 - 4x(1+x^2) = 0$$

Received September 26, 1995.

1991 AMS Subject Classification: Primary 30C45; Secondary 30C50.

Key words: Generalized partial sum, convolution, univalent.

That is, $\tilde{f}(cz)/c$ is in K or St when f is in K or St [1] and is in S when f is in S[2]. In all cases, the extremal generalized partial sum is of the form $z + \sum_{n=2}^{\infty} a_{2n} z^{2n}$.

Ruscheweyh in [5] defined the subfamily D of K consisting of functions f for which $|f''(z)| \leq \text{Re } f'(z)$, $z \in \Delta$. In [3] it was conjectured for any f in D and $g, h \in S$ that

(2)
$$\operatorname{Re} \frac{(f * g * h)(z)}{z} > 0, \ z \in \Delta.$$

This far reaching conjecture is stronger than the former Bieberbach Conjecture (de Branges' theorem). The conjecture was verified for $g, h \in C$. It was also established for special functions in D. In particular, for the Nth section of $z + \sum_{k=2}^{\infty} z^k$,

$$f_N(z)=4\sum_{k=1}^N\left(rac{z}{4}
ight)^k\in D$$
 and
$${\rm Re}\; rac{f_N*g*h}{z}>0\;\;{
m for}\;\;z\in\Delta\;\;{
m and}\;\;g,h\in S.$$

In [2] it was shown for the generalized partial sum $\tilde{f}(z) = z + \sum_{k=2}^{\infty} z^{n_k}$ that $\tilde{f}(cz)/c \in D$. Thus, another special case of the conjecture (2) would be verified if we could show for $g, h \in S$ that

(3)
$$\operatorname{Re} \frac{\left(z + \sum_{k=2}^{\infty} z^{n_k}\right) * g * h}{z} > 0, \qquad |z| < c.$$

In this note, we establish (3) in three out of the four cases needed. In the final case, we verify inequality (3) for the disk |z| < 0.2082 instead of $|z| < c \approx 0.20936$. The method in case 4 does not extend to |z| < c, but an alternate approach suggested might possibly prove fruitful.

2. Preliminaries

We will make use of the following results.

Theorem A [4]. If $f \in S$, then

$$\operatorname{Re} \frac{f(z)}{z} \ge \alpha \ge \left(\frac{e+1}{2e}\right)^2 \approx 0.468 ||\underline{for}|||z| \le \alpha^{-1/2} - 1.$$

THEOREM B [3]. If $g,h \in S$ satisfy Re $g(z)/z \ge \alpha$ and Re $h(z)/z \ge \alpha, z \in \Delta$, then

$$\operatorname{Re}\frac{(g*h)(z)}{z} \ge 4\alpha - 2\alpha^2 - 1, \qquad z \in \Delta.$$

We now prove a lemma based on Theorems A and B.

LEMMA. If $g, h \in S$ and $d := (\alpha^{-1/2} - 1)^{\frac{1}{2}}$ for some $\alpha \ge ((\epsilon + 1)/2e)^2$, then

$$Re \frac{(g*h)(z)}{z} \ge 4\alpha - 2\alpha^2 - 1, \qquad |z| \le d.$$

Proof. Since $\sqrt{d} = \alpha^{-1/2} - 1$, by Theorem A we have

$$\operatorname{Re} \ \frac{g(\sqrt{d}z)}{\sqrt{d}z} \geq \alpha \ \ \operatorname{and} \ \ \operatorname{Re} \ \frac{h(\sqrt{d}z)}{\sqrt{d}z} \geq \alpha, \qquad z \in \Delta.$$

Hence by Theorem B,

$$\operatorname{Re} \left(\frac{g(\sqrt{d}z)}{\sqrt{d}z} * \frac{h(\sqrt{d}z)}{\sqrt{d}z} \right) \ge 4\alpha - 2\alpha^2 - 1, \qquad z \in \Delta.$$

This last inequality is equivalent to

Re
$$\frac{(g*h)(z)}{z} \ge 4\alpha - 2\alpha^2 - 1$$
, $|z| \le d$,

and the lemma is proved.

3. Main Result

THEOREM. For $g(z)=z+\sum_{k=2}^{\infty}a_kz^k\in S$ and $h(z)=z+\sum_{k=2}^{\infty}b_kz^k\in S$, we set

$$A(z) = \frac{\left(z + \sum_{k=2}^{\infty} z^{n_k}\right) * g * h}{z} = 1 + \sum_{k=2}^{\infty} a_{n_k} b_{n_k} z^{n_k - 1}.$$

<u>Then</u> Re $A(z) \ge 0$ for $|z| \le 0.2082$.

Proof. In the first three cases we will prove our theorem for $|z| \le c \approx 0.20936$ defined by (1).

Case 1. $n_2 \geq 3$.

Then for $|z| \le c$, Re $A(z) \ge 1 - \sum_{n=3}^{\infty} n^2 c^{n-1} = 1 - \left(\frac{1+c}{(1-c)^3} - 1 - 4c\right) > 0.39$.

Case 2. $n_2 = 2, n_3 = 3$. Since $A(z) = 1 + a_2 b_2 z + a_3 b_3 z^2 + \sum_{k=4}^{\infty} a_{n_k} b_{n_k} z^{r_k - 1}$ and

$$\frac{(g*h)(z)}{z} = 1 + a_2b_2z + a_3b_3z^2 + \sum_{n=1}^{\infty} a_nb_nz^{n-1},$$

we see that

$$A(z) = \frac{(g * h)(z)}{z} - \sum_{\substack{j=4\\j \neq n_b}}^{\infty} a_j b_j z^{j-1}$$

Hence for $|z| \leq c$,

Re
$$A(z) \ge \text{Re } \frac{(g*h)(z)}{z} - \sum_{j=4}^{\infty} j^2 c^{j-1}$$

$$= \text{Re } \frac{(g*h)(z)}{z} - \left(\frac{1+c}{(1-c)^3} - 1 - 4c - 9c^2\right)$$

$$\ge \text{Re } \frac{(g*h)(z)}{z} - 0.22.$$

When |z| = c, we set d = c in the Lemma to get $\alpha > 0.47$. The Lemma thus yields Re $A(z) \ge 0.43 - 0.22 > 0$.

We are left to consider cases where $n_2 = 2, n_3 \neq 3$, and either the first n_k after consecutive even integers is the succeeding odd integer or it is not. The next case considers when it is not.

$$\frac{\text{Case 3.}}{(m \ge 1)} \quad A(z) = 1 + \sum_{n=1}^{m} a_{2n} b_{2n} z^{2n-1} + \sum_{n_k \ge 2m+3}^{\infty} a_{n_k} b_{n_k} z^{n_k-1}$$

Then for |z| < c,

(4)
$$\operatorname{Re} A(z) \ge 1 - \sum_{n=1}^{m} (2n)^2 c^{2n-1} - \sum_{n=2n+3}^{\infty} n^2 c^{n-1}.$$

In [1] an induction proof was used to show that the RHS of (4) is a decreasing function of m. Letting $m \to \infty$ we have

(5)
$$\operatorname{Re} A(z) \ge 1 - \sum_{n=1}^{m} (2n)^2 c^{2n-1}.$$

Writing $b(z) = \sum_{n=1}^{\infty} 2nz^{2n} = z \frac{d}{dz} \left(\sum_{n=1}^{\infty} z^{2n} \right) = \frac{2z^2}{(1-z^2)^2}$, we see that $b'(z) = \sum_{n=1}^{\infty} (2n)^2 z^{2n-1} = \frac{4z(1-z^2)}{(1-z^2)^3}$. It thus follows from (5) and (1) that

Re
$$A(z) \ge 1 + b'(-c) = 0$$
 $(|z| \le c)$.

Sharpness occurs in Case 3 at z = -c when $g(z) = h(z) = z/(1-z)^2$ with generalized partial sum $z + \sum_{m=1}^{\infty} z^{2m}$.

In the final case, the first n_k after consecutive even integers is the succeeding odd integer.

$$\frac{\text{Case 4.}}{+\sum_{n_k \ge 2m+4}^{m+1} a_{2n} b_{2n} z^{2n-1} + a_{2m+3} b_{2m+3} z^{2m+2}}{+\sum_{n_k \ge 2m+4}^{m+1} a_{n_k} b_{n_k} z^{n_k-1}} \quad (m \ge 1).$$

This is equivalent to

$$A(z) = \frac{(g*h)(z)}{z} - \sum_{n=1}^{m} a_{2n+1} b_{2n+1} z^{2n} - \sum_{\substack{j=2m+4 \ i \neq n}} a_j b_j z^{j-1}.$$

Thus,

(6) Re
$$A(z) \ge \operatorname{Re} \frac{(g*h)(z)}{z} - \sum_{n=1}^{m} (2n+1)^2 |z|^{2n} - \sum_{n=2m+4}^{\infty} n^2 |z|^{n-1}$$
.

As in Case 3., the RHS of (6) decreases with m when $|z| \leq c$, and hence

(7)
$$\operatorname{Re} A(z) \ge \operatorname{Re} \frac{(g * h)(z)}{z} - \sum_{n=1}^{\infty} (2n+1)^2 |z|^{2n}$$
$$= \operatorname{Re} \frac{(g * h)(z)}{z} - \frac{|z|^2 (|z|^4 - 2|z|^2 + 9)}{(1 - |z|^2)^3}.$$

When |z| = d = 0.2082, it follows from the Lemma that $\alpha = (1 + \sqrt{d})^{-2} \approx 0.471525$ and Re $\frac{(g*h)(z)}{z} \geq 4\alpha - 2\alpha^2 - 1 \geq 0.44142$. Since $d^2(d^4 - 2d^2 + 9)/(1 - d^2)^3 < 0.4414$, we see from (7) that Re A(z) > 0 for $|z| \leq d = 0.2082$. This completes the proof.

4. Concluding Remarks

The method in <u>Case 4</u>, does not directly extend to $|z| = c \approx 0.20936$, which we strongly believe to be the sharp result. When |z| = c, the method gives Re $\frac{(g*h)(z)}{z} \approx 0.439683$ and $\frac{c^2(c^4-2c^2+9)}{(1-c^2)^3} \approx 0.44916$.

So the best we can get from (7) when $|z| \le c$, is roughly Re A(z) > -0.0095.

Perhaps some refinement of inequality (6) could lead to the sharp result. The method of <u>Case 2</u> shows that (6) is valid for $|z| \le c$ when $m = 1(n_2 = 2, n_3 = 4, n_4 = 5)$, but does not extend to $m \ge 2$.

An alternate approach is to consider the following problem, of independent interest.

Find the largest r for which

$$\inf_{|z|=r} \operatorname{Re} \frac{(g*h)(z)}{z} = \inf_{|z|=r} \operatorname{Re} g'$$

taken over all $g, h \in S$.

In other words, when is the Koebe function the extremal h over all $g \in S$?

If we should find that $r \geq c$, then we would have

Re
$$\frac{(g*h)(z)}{z} \ge \frac{1-c}{(1+c)^3} = \frac{c^2(c^4-2c^2+9)}{(1-c^2)^3}$$
 $(|z| \le c),$

and Case 4. would then extend to $|z| \leq c$.

References

- 1. R. Fournier and H. Silverman, Radii problems for generalized sections of convex functions, Proc. Amer. Math. Soc. 112 (1991), 101-107.
- 2. _____, On generalized sections of univalent functions, Complex Variables 17 (1992), 141-147.
- 3. V. Gruenberg, F. Ronning and St. Ruscheweyh, On a multiplier conjecture for univalent functions, Trans. Amer. Math. Soc. 322 (1990), 377-393.
- 4. M. Reade and H. Silverman, Radii problems for linear properties of univalent functions, Houston J. Math. 17 (1991), 227-235.
- St. Ruscheweyh, Extension of Szegő's theorem on the sections of univalent functions, SIAM J. Math. Anal. 19 (1988), 1442-1449.
- G. Szegő, Zur Theorie der schlichten Abbildungen, Math. Ann. 100 (1928), 188-211.

Department of Mathematics University of Charleston Charleston, SC 29424