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CONVOLUTION PROPERTIES FOR
GENERALIZED PARTIAL SUMS

HERE SILVERMANXN

1. Introduction

3

' For functions f(z) = 3°C anz™ and g¢(z) = h analytic
in the unit disk A = {z : |z| < 1}, the convclution f * g is defined
by (f*g)(z) = Yool @nbaz™. Let S denote the family of functions
f(z) = z4 - analytic and univalent in A and K, St, C the subfamilies
that are respectively convex, starlike, and close-to-convex.

—o bnz

To a finite or infinite increasing sequence of integers {ng} with ny >
k and a function f(z) = 2+ 3277, a,2™ analytic in A we associate the

function f.

called a generalized partial sum of the function /. In the special case

that {n,} is the finite sequence ny = & (k = 2,3, .. , V) we get the
N

Nth section of f, f(z) = In(z) = <: + D hes z‘) * f(z).

Szego in [6] showed that the Vth section of functions in S, St.or K
are respectively univalent, starlike. or convex in the disk |zl < 1/4. In
each case. a function of the form fa(z) = z 4+ a22? shows that the valuc

1/4 cannot be increased. For the generalized partial sum f. the value
1/4 may be replaced with the constant ¢ ~ 0.20936. the root in (0,1)
of the polynomial equation

(1) (1—x%)3- 4r(1+2%) =0
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That is, f(cz)/cis in K or St when fisin K or St [1] and is in S when
fisin §[2]. In all cases, the extremal generalized partial sum is of the
form z 4+ 3>, az,z®™

Ruscheweyh in [5] defined the subfamily D of K™ consisting of func-
tions f for which |f"(z)| < Re f'(z). z € A. In [3] it was conjectured
for any fin D and ¢g,h € S that

(f*xg=* h)(;_)

z

(2) Re >0, z € A

This far reaching conjecture is stronger than the former Bieberbach
Conjecture (de Branges’ theorem). The conjecture was verified for
g,h € C. It was also established for special functions in D. In partic-
ular, for the Nth section of z + Y 77 2F,

N

fn(z) =43 (Z)k €D and
k=

IRE fn*xgx*h

<

>0 for z€ A and g,h € S.

In [2] it was shown for the generalized partial sum f(z) = z+
Y rep 2™ that f(cz)/c € D. Thus, another special case of the conjec-
ture (2) would be verified if we could show for ¢,k ¢ S that

(z—i—}:f:zz"k) xgxh

z

(3) Re >0, |zl < c.

In this note, we establish (3) in three out of the four cases needed. In
the final case, we verify inequality (3) for the disk |z| < 0.2082 instead
of |z| < ¢~ 0.20936. The method in case 4 does not extend to |z| < ¢,
but an alternate approach suggested might possibly prove fruitful.

2. Preliminaries

We will make use of the following results.
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THEOREM A [4]. If f€ S, then

| %0468 for z|<a”'/?- 1.

e/

‘f(z)2a2<e+1\

THEOREM B [3]. If g,h € S. satisfy Re g(z)/z > o and Re h(z)/z
> o,z €A, then

* h .
Re(—g—-—— )z) > 4o — 20 — 1, z € A,

-~

We now prove a lemma based on Theorems A and B.

LEMMA. If gh € S and d = (a”'/? —1)' for some o > ((¢ +
1)/2¢)?, then

. (g% h)(2)

R > 4o — 20 — 1. |z] < d.

Proof. Since Vd=a 1?1, by Theorem 4 we have

> g(\/\/_i:) > a and Re h(\/\/;iz) >y, z € A

Hence by Theorem B,

Re

Re (gm;) , hVdz)
T\ Vi Vi

This last inequality is equivalent to

)24@—2&2—1, €A

{gxh)z)

P

Re > 4a - 2a% 1, |z < d,

and the lemma is proved.
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3. Main Result

THEOREM. For g¢(z) = z + X, apt €S and hiz) = -+
Ziozz bez¥ € S, we set

(z+Z:°:22"‘°)*g*h oo
~ 1S g by,
< k=2

Then Re A(z) >0 for |z] < 0.2082.

A(z) =

Proof. In the first three cases we will prove our theorem for |z <
¢~ (.20936 defined by (1).

Case 1. n, > 3.

Then for [z < ¢, Re A(z)>1- 5 p2en~! =1 (_th_ -1-

(1—c)s
4Q > 0.39.

Case 2. np = 2,n3 = 3.
Since A(z) =1+ azbyz + azbzz? + Y re s n b, 2" and

(g*h)(=z)

Z

=14 agboz + a3b32? + Z apb,z"1

=4

we see that

A(z) = lg=h)(z) Z a;b, 27

Z T
JEN

Hence for |z] < ¢,

h iy
Re A(z) > Re g*) } 2!
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When |z] = ¢, we set d = ¢ in the Lemma to get v > 0.47. The Lemma
thus yields Re A(z) > 0.43 — 0.22 > (.

We are left to consider cases where ny = 2,93 # 3. and either the
first 7 after consecutive even integers is the succeeding odd integer or
it is not. The next case considers when it is nof.

Case 3. Alz) =1+ 300 tuubanz® 0 L S0 by, !
(m >1).
Then for |:] < ¢,
m o
(4) Re A(z)>1- Z(z,”)Z(r‘Z'n—l B Z; nienl
n=| n=2n:43

In [1] an induction proof was used to show that the RHS of (4) 15 a
decreasing function of m. Letting m — oo we hive

It

(.5) Re A(;) > 1 2(271)20211—- I

\Afriting b(:) = S‘% i 27/32“ = ;;—i-( y | ZQT}) o= r%v. WwWe see fhat

bz) =377 (2n)tein-l = 12U thus fol ows from (5) and (1)

(1—: 2 )3
that
Re A(z) > 1+ ¢)=0 (=] < e).
Sharpness oceurs in Case 3 at = = — ¢ when gl ) =h{z)=z/(1-2)*

' voralised marts L. L% 2m
with generalized partial sum = + S i

In the final case, the first n; after consecutive even integers 1s the
succeeding odd integer.

-1 2n—1 .2 2

Case 4. A(z)=1+ Ln:] @b 2™ b ag g sbagmag 2T
STy -1

+ an c2mtd Cng Oy 2™ (m >1).

This is equivalent to

g h Z ™ ‘ iR .
A(Z) = (_S_’_%(___) — LZ;l a2n+11)2n+],‘:2n — L]:im +4 a]-b]zJ I

J n.
Thus,
(g*h)(z) < -
\ gz = 20,12 2y n—1

(6) Re A(z) > Re——+222 2‘(27/, + 1)z — Z ne=|"
n: | n=2m-+4
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Asin Case 3., the RHS of (6) decreases with m when [z] < ¢, and hence

h 20
(7) Re A(z) >Re g+ ) Z (2n + 1)3|z*"
. 4 _ 9.2
:Remh)u (12[* ~ 21:[* +9)
z (1—1z2)?
When |z| d = 0.2082, it follows from the Lemna that o = (1 +

Vd)=? = 0.471 525 and Re Q—*Q(—z—— > 4a — 2a® —© > 0.44142. Since
d*(d* - 2d2 +9)/(1—d*)* <. 4414 we see from (7) that Re A(z) > 0
for |z| < d = 0.2082. Thlb completes the proof.

4. Concluding Remarks

The method in Case 4. does not directly extend to |z] = ¢ = 0.20936,
which we strongly believe to be the sharp result. When |z| = ¢, the

method gives Re ¥ ~ 0439683 and —<:—2.r)3i9) ~ 0.44916.

So the best we can get from (7) when |z| < ¢, is roughly Re A(z) >
—-0.0095.

Perhaps some refinement of inequality (6) could lead to the sharp
result. The method of Case 2. shows that (6) is valid for |z| < ¢ when
m = 1(ny = 2,n3 = 4,n4 = 5), but does not extend to m > 2.

An alternate approach is to consider the following problem, of inde-
pendent interest.

Find the largest r for which

inf Re (g*h)(:l_ inf Re g’

|z|=r z jz|=r

taken over all g, h € 5.
In other words, when is the Koebe function the extremal h over all

geS?
If we should find that r > ¢, then we would have
(g*h)(z) S l—c (! =224 9)
z (143 (1—c2)3

and Cage 4. would then extend to |z] < c.

Re
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