DOI QR코드

DOI QR Code

THE HARDY SPACE OF RAMANUJAN-TYPE ENTIRE FUNCTIONS

  • Erhan Deniz (Department of Mathematics, Faculty of Science and Letters, Kafkas University) ;
  • Murat Caglar (Department of Mathematics, Faculty of Science, Erzurum Technical University)
  • Received : 2022.04.18
  • Accepted : 2022.09.30
  • Published : 2023.03.25

Abstract

In this paper, we deal with some geometric properties including starlikeness and convexity of order 𝛽 of Ramanujan-type entire functions which are natural extensions of classical Ramanujan entire functions. In addition, we determine some conditions on the parameters such that the Ramanujan-type entire functions belong to the Hardy space and to the class of bounded analytic functions.

Keywords

References

  1. A. Baricz, Bessel transforms and Hardy space of generalized Bessel functions, Mathematica, 48 (2006), 127-136.
  2. E. Deniz, Geometric and monotonic properties of Ramanujan type entire functions, Ramanujan J. 55 (2021), 103-130 https://doi.org/10.1007/s11139-020-00267-w
  3. P. L. Duren, Theory of Hp Spaces. A series of Monographs and Textbooks in Pure and Applied Mathematics, vol. 38, Academic Press, New York and London, 1970.
  4. P. J. Eenigenburg, and F. R. Keogh, The Hardy class of some univalent functions and their derivatives, Michigan Math. J. 17 (1970), 335-346. https://doi.org/10.1307/mmj/1029000519
  5. M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, Cambridge, 2005.
  6. M. E. H. Ismail, and R. Zhang, q-Bessel functions and Rogers-Ramanujan type identities, Proc. Am. Math. Soc. 146 (2018) 3633-3646. https://doi.org/10.1090/proc/13078
  7. I. B. Jung, Y. C. Kim, and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138-147. https://doi.org/10.1006/jmaa.1993.1204
  8. Y. C. Kim, and H. M. Srivastava, Some families of generalized hypergeometric functions associated with the Hardy space of analytic functions, Proc. Japan Acad., Seri A, 70 (1994), no. 2, 41-46.
  9. S. Ponnusamy, The Hardy space of hypergeometric functions, Complex Var. Elliptic Equ. 29 (1996), 83-96. https://doi.org/10.1080/17476939608814876
  10. J. K. Prajapat, S. Maharana, and D. Bansal, Radius of starlikeness and Hardy space of Mittag-Leffer functions, Filomat, 32 (2018), no. 18, 6475-6486. https://doi.org/10.2298/FIL1818475P
  11. M. Raza, M. U Din, and S. N. Malik, Certain geometric properties of normalized Wright functions, J. Func. Spaces, 2016 Article ID 1896154 (2016), 1-8.
  12. H. Silverman, Univalent functions with negative coefficients, Proc. Am. Math. Soc. 51 (1975), no. 1, 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
  13. J. Stankiewich, and Z. Stankiewich, Some applications of Hadamard convolutions in the theory of functions, Ann. Univ. Mariae Curie-Sklodowska, 40 (1986), 251-265.
  14. N. Yagmur, Hardy space of Lommel functions, Bull. Korean Math. Soc. 52 (2015), no. 3, 1035-1046. https://doi.org/10.4134/BKMS.2015.52.3.1035
  15. N. Yagmur, and H. Orhan, Hardy space of generalized Struve functions, Complex Var. Elliptic Equ. 59 (2014), no. 7, 929-936. https://doi.org/10.1080/17476933.2013.799148
  16. R. Zhang, Zeros of Ramanujan type entire functions, Proc. Am. Math. Soc. 145 (2017), 241-250.  https://doi.org/10.1090/proc/13205