• Title/Summary/Keyword: contents of mathematics education

Search Result 667, Processing Time 0.024 seconds

A Study on Differences of Metacognitive Awareness of Reading Strategy Use in English Reading among General Learners, Gifted Learners in Science and Mathematics (일반학생과 수·과학 영재들의 영어 읽기과정에서의 메타인지 읽기전략 사용 차이에 관한 연구)

  • Bang, Jyun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.245-246
    • /
    • 2018
  • 본 연구는 일반학생과, 수 과학 영재학생의 영어읽기에서의 메타인지 읽기전략의 차이를 알아보는데 목적이 있다. 일반학생 98명, 과학영재 79명, 수학영재 86명이 본 연구에 참여하였다. 이들의 메타인지 읽기전략을 알아보기 위해 MARSI설문지를 사용하였고, 그 자료는 one-way ANOVA로 분석하였다. 그 결과 수학과 과학영재 사이의 영어읽기 과정 중 메타인지 읽기전략의 사용에서는 통계적으로 유의미한 차이는 보이지 않았지만, 수 과학 영재학생들과 일반 학생들 사이의 메타인지 읽기전략사용에서는 통계적으로 유의미한 차이를 보였다.

  • PDF

A Comparative Study of Elementary School Mathematics Textbooks between Korea and Japan - Focused on the 4th Grade - (한국과 일본의 초등학교 수학교과서 비교 연구 - 4학년을 중심으로 -)

  • Lee, Jae-Chun;Kim, Seon-Yu;Kang, Hong-Jae
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • This research is to provide a useful reference for the future revision of textbook by comparative analysis with the textbook in the 4th grade of elementary school in Japan. The results from this research is same as follows: First, Korean curriculum is emphasizing the reasonable problem-solving ability developed on the base of the mathematical knowledge and skill. Meantime, Japanese puts much value on the is focusing on discretion and the capability in life so that they emphasize each person's learning and raising the power of self-learning and thinking. The ratio on mathematics in both company are high, but Japanese ensures much more hours than Korean. Second, the chapter of Korean textbook is composed of 8 units and the title of the chapter is shown as key word, then the next objects are describes as 'Shall we do$\sim$' type. Hence, the chapter composition of Japanese textbook is different among the chapter and the title of the chapter is described as 'Let's do$\sim$'. Moreover, Korean textbook is arranged focusing on present study, however Japanese is composed with each independent segments in the present study subject to the study contents. Third, Japanese makes students understand the decimal as the extension of the decimal system with measuring unit($\ell$, km, kg) then, learn the operation by algorithm. In Korea, students learn fraction earlier than decimal, but, in Japan students learn decimal earlier than fraction. For the diagram, in Korea, making angle with vertex and side comes after the concept of angle, vertex and side is explained. Hence, in Japan, they show side and vertex to present angle.

  • PDF

A Comparative Analysis of Graphical Representations Related to Addition of Fractions in Elementary Mathematics Textbooks of Korea and Singapore (한국과 싱가포르의 초등학교 수학 교과서에 제시된 분수의 덧셈 관련 시각적 표현에 대한 비교 분석)

  • Lee, Jiyoung;Pang, JeongSuk;Seo, Eunmi;Kim, Kyeonghun
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.3
    • /
    • pp.537-555
    • /
    • 2017
  • This paper compared and contrasted Korean and Singaporean textbooks in order to explore the direction and possibility of teaching the big ideas related to the addition and subtraction of fractions with different denominators proposed by Lee & Pang (2016a). Firstly, we examined the teaching sequences related to the addition of fractions with different denominators in a series of elementary mathematics textbooks of Korea and Singapore. We then analyzed what types of representations are used and how the representations are presented for the big ideas related to the addition of fractions with different denominators. The results of the analysis showed that the contents related to fraction addition are addressed more gradually and systematically in Singaporean textbooks compared to Korean counterparts. The graphical representations appeared in the Singaporean textbooks provide specific implications for teaching the big ideas of the addition of fractions with different denominators. Based on such implications, we expect that the big ideas related to the addition of fractions with different denominators will be addressed explicitly and systematically in Korean textbooks.

Systematic literature review on AI-based mathematics teaching and learning: Focusing on the role of AI and teachers (AI 기반 수학 교수·학습에 대한 체계적 문헌 고찰: AI의 역할과 교사의 역할을 중심으로)

  • Jungeun Yoon;Oh Nam Kwon
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.573-591
    • /
    • 2024
  • The purpose of this study is to explore research trends on AI-based mathematics teaching and learning. For this purpose, a systematic literature review was conducted on 57 literatures in terms of research subject, research method, research purpose, learning content, type of AI, role of AI, and role of teachers. The results indicate that student accounted for the largest proportion at 51% among the research subjects, and quantitative research was the highest at 49% among the research methods. The purpose of study was distributed as follows: effect analysis 44%, theoretical discussion 35%, case study 21%. 'Numbers and Operations' and 'Variables and Expressions' covered learning contents most, and Intelligent Tutoring System (ITS) was used the most among the types of AI. 'Student teaching' was the largest parts of role of AI at 40.4%, followed by 'teacher support' at 22.8%, 'student support' at 21%, and 'system support' at 15.8%. The role of teachers as 'AI recipients' was highlighted in earlier studies, and the role of teachers as 'constructive partner with AI' was highlighted in more recent studies. Also, role of teachers was explored in pedagogical, AI-technological, content aspects. Through this, follow-up research was suggested and the roles that teachers should have in AI-based mathematics teaching and learning were discussed.

An Analysis of the Addition and Subtraction of Fractions in Elementary Mathematics Instructional Materials (분수의 덧셈과 뺄셈에 관한 초등학교 수학과 교과용 도서 분석)

  • Pang, Jeong-Suk;Lee, Ji-Young
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.2
    • /
    • pp.285-304
    • /
    • 2009
  • The operations of fractions are the main contents of number and operations in the elementary mathematics curriculum. They are also difficult for students to understand conceptually. Nevertheless, there has been little study on the addition and subtraction of fractions. Given this, this paper explored the connection between the national mathematics curriculum and its concomitant textbooks, the adequacy of when to teach, and the method of constructing each unit to teach addition and subtraction of fractions. This paper then analyzed elementary mathematics textbooks and workbooks by three parts aligned with the general instructional flow: 'introduction', 'activity', and, 'exercise'. First, it was analyzed with regard to the introduction part whether the word problems of textbooks might reflect on students' daily lives as intended, how different meanings of operations would be expected to be taught, and how the subsequent activities were connected with the original word problems. Second, the main analysis of activity part of the textbooks dealt with how to use concrete or iconic models to promote students' conceptual understanding of operations and how to formalize the calculation methods and principles with regard to addition and subtraction of fractions. Third, the analysis of the part of exercise in the textbooks and workbooks was conducted with regard to problem types and meanings of operations. It is expected that the issues and suggestions stemming from this analysis of current textbooks and workbooks are informative in developing new instructional materials aligned to the recently revised mathematics curriculum.

  • PDF

Analysis on Definitions of Continuity Conveyed by School Mathematics and Academic Mathematics (학교수학과 학문수학에서의 연속성 개념 정의의 분석)

  • Kim, Jin Hwan;Park, Kyo Sik
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.3
    • /
    • pp.375-389
    • /
    • 2017
  • The purpose of this study is to analyze the difference and inter-connectivity between the definition of continuity in school mathematics and the definition of academic mathematics in four perspectives. These difference and inter-connectivity have not analyzed in previous papers. According to this study, the definition of 'continuity and discontinuity at one point' in school mathematics depends on the limit processing but in academic mathematics it depends on the topology of the domain. The target function of the continuous function in school mathematics is a function whose domain is limited to an interval or a union of intervals, but the target function of the continuous function in academic mathematics is all functions. Based on these results, the following two opinions are given in relation to the concept of continuity in school mathematics. First, since the notion of local continuity in school mathematics is based on limit processing, the contents of 2009-revised textbooks that deal with discontinuity at special point not belonging to the domain is appropriate. Here the discontinuity appears as types of infinite discontinuity, removable discontinuity, and step discontinuity. Second, the definition of a general continuous function is proposed to "if there is no discontinuity point in the domain of a function y = f(x), we call the function f a continuous function." This definition allows the discontinuity at special point in non-domain, but is consistent with the definition in academic mathematics.

Design and Implementation of Iterative Contents based on SCORM in Mathematics (수학교과에서 SCORM 기반 반복 학습 콘텐츠의 설계 및 구현)

  • Jeong, Jae-Cheul;Shin, Kyeong-Ae;Lee, Se-Hoon;Yoo, Won-Hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.153-158
    • /
    • 2009
  • SCORM(Sharable Content Object Reference Model)은 세계 e-Learning 표준화 분야에서 가장 주목을 받고 있는 ADL(Advanced Distributed Learning)의 표준화 모델이다. SCORM2004 RTE(Run-Time Environment) 에서 상호작용 데이터 모델(Interaction Data Model)의 기능을 활용하면 LMS(Learning Management System)가 문항을 자동 생성하여 문제은행을 보다 쉽게 구현할 수 있다. 내용학습 후에 형성평가를 실시하기 위한 문항을 학습자가 원하는 만큼 공급할 수 있다. 본 연구는 일반계 고등학교 수학교과의 삼각함수 성질을 학습하는 데 있어 RTE의 상호작용 데이터 모델로 구현한 문제은행을 갖춘 반복학습 콘텐츠를 개발하여 학습효과를 높이고자 한다.

  • PDF

A Design of Multiplication Unit of Elementary Mathematics Textbook by Making the Best Use of Diversity of Algorithm (알고리즘의 다양성을 활용한 두 자리 수 곱셈의 지도 방안과 그에 따른 초등학교 3학년 학생의 곱셈 알고리즘 이해 과정 분석)

  • Kang, Heung-Kyu;Sim, Sun-Young
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.2
    • /
    • pp.287-314
    • /
    • 2010
  • The algorithm is a chain of mechanical procedures, capable of solving a problem. In modern mathematics educations, the teaching algorithm is performing an important role, even though contracted than in the past. The conspicuous characteristic of current elementary mathematics textbook's manner of manipulating multiplication algorithm is exceeding converge to 'standard algorithm.' But there are many algorithm other than standard algorithm in calculating multiplication, and this diversity is important with respect to didactical dimension. In this thesis, we have reconstructed the experimental learning and teaching plan of multiplication algorithm unit by making the best use of diversity of multiplication algorithm. It's core contents are as follows. Firstly, It handled various modified algorithms in addition to standard algorithm. Secondly, It did not order children to use standard algorithm exclusively, but encouraged children to select algorithm according to his interest. As stated above, we have performed teaching experiment which is ruled by new lesson design and analysed the effects of teaching experiment. Through this study, we obtained the following results and suggestions. Firstly, the experimental learning and teaching plan was effective on understanding of the place-value principle and the distributive law. The experimental group which was learned through various modified algorithm in addition to standard algorithm displayed higher degree of understanding than the control group. Secondly, as for computational ability, the experimental group did not show better achievement than the control group. It's cause is, in my guess, that we taught the children the various modified algorithm and allowed the children to select a algorithm by preference. The experimental group was more interested in diversity of algorithm and it's application itself than correct computation. Thirdly, the lattice method was not adopted in the majority of present mathematics school textbooks, but ranked high in the children's preference. I suggest that the mathematics school textbooks which will be developed henceforth should accept the lattice method.

  • PDF

An Analysis of 'Related Learning Elements' Reflected in Textbooks (<인공지능 수학> 교과서의 '관련 학습 요소' 반영 내용 분석)

  • Kwon, Oh Nam;Lee, Kyungwon;Oh, Se Jun;Park, Jung Sook
    • Communications of Mathematical Education
    • /
    • v.35 no.4
    • /
    • pp.445-473
    • /
    • 2021
  • The purpose of this study is to derive implications for the design of the next curriculum by analyzing the textbooks designed as a new subject in the 2015 revised curriculum. In the mathematics curriculum documents of , 'related learning elements' are presented instead of 'learning elements'. 'Related learning elements' are defined as mathematical concepts or principles that can be used in the context of artificial intelligence, but there are no specific restrictions on the amount and scope of dealing with 'related learning elements'. Accordingly, the aspects of 'related learning elements' reflected in the textbooks were analyzed focusing on the textbook format, the amount and scope of contents, and the ways of using technological tools. There were differences in the format of describing 'related learning elements' in the textbook by textbook and the amount and scope of handling mathematics concepts. Although similar technological tools were dealt with in each textbook so that 'related learning elements' could be used in the context of artificial intelligence, the focus was on computations and interpretation of results. In order to fully reflect the intention of the curriculum in textbooks, a systematic discussion on 'related learning elements' will be necessary. Additionally, in order for students to experience the use of mathematics in artificial intelligence, substantialized activities that can set and solve problems using technological tools should be included in textbooks.

The Effects of 'Climbing learning Method' in the Learning of Mathematics in Elementary School (학습구조차트를 활용하는 등산학습법의 초등수학 적용과 효과에 관한 연구)

  • Baik, Min-Ho;Kim, Pan-Soo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.11 no.2
    • /
    • pp.177-197
    • /
    • 2007
  • This study discussed the climbing learning method which studied and practiced by Professor Saito Noboru. This is the learning method which is devised to know not only the relationship of the learning factors but the systemic or structural connection of whole studying contents- affects children's math learning ability through practical class to both the lower and the higher grades. To achieve the purpose of this study, these following issues were set; A. Develop the teaching and learning course of mathematics by applying the climbing learning method. B. Execute the mathematics lesson according to the climbing learning method and analyze the learning achievement. C. Analyze the difference between application of the climbing learning method and that of the learning method by student's level in mathematics. D. Analyze what the climbing learning method gives a shift of the recognition of learning mathematics. In order to accomplish these study issues, we analyzed the text book of math not only for children but also for teachers and developed the teaching and learning course applied the climbing learning method with advice of experts. It was chosen two different homogeneous groups each, third year for lower grade group and fifth year for higher grade group. It was done the experimental group lesson applying the climbing learning method and general lesson for the control group. After then, t-test against independent samples was done depending on the result of the student's assessment(T1, T2). These two groups' students were divided into smaller groups based on result of achievement level regardless of gender. These subgroups were confirmed the difference of learning ability between upper and lower level group. As regarding the result making out grades of faith and attitude for math, t-test was used on independent sample. At the same time, experimental groups were tested using learning attitude with the learning structure chart. Through this study the following results are obtained and the conclusion was drawn. Firstly, although applying the climbing learning method to the lesson does not have significant effect to the lower grade of elementary school student's achievement it has significant influence on the higher grade student's achievement. Second, as a result of analyzing the difference between the climbing learning method and the learning method by student's level in mathematics, it is of no beneficial effect to the lower grade both upper level and lower level. However, it has appreciable effect to the higher grade classes both upper level and low level. Especially, upper level students have higher effect than low level students. Third, climbing learning method does not affect to the faith and attitude of the lower grade students positively, but it has affirmative effect to the higher grade students'. As a result of the survey of the experimental groups which were applied to the climbing loaming method, the lesson by using the learning structure chart proved to be helpful to the both the lower and higher grade. The best advantage of using the learning structure chart, children say, is easily understood whole contents of studying and is useful for review. Furthermore, using the learning structure chart is more efficient compared with previous learning method and is given the successful result to self-directed learning. In conclusion, keeping up with the current of the thought of education, we suggest a scheme as a new teaching method from the constructive learning method which emphasize the self-directed learning.

  • PDF