• 제목/요약/키워드: content intelligence

검색결과 464건 처리시간 0.019초

거대언어모델(LLM)이 인식하는 공연예술의 차별 양상 분석: ChatGPT를 중심으로 (Analysis of Discriminatory Patterns in Performing Arts Recognized by Large Language Models (LLMs): Focused on ChatGPT)

  • 최지애
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.401-418
    • /
    • 2023
  • 최근 ChatGPT 등의 등장으로 거대언어모델(이하 LLM: Large Language Model)에 대한 사회경제적 관심이 고조되고 있다. 생성형AI의 일종인 거대언어모델은 대본 창착이 가능한 수준까지 이르고 있다. 이러한 측면에서 일반인과 전문가들이 광범위하게 활용할 거대언어모델에서 공연예술 전반 혹은 특정 공연예술물이나 단체의 차별 이슈(성차별, 인종차별, 종교차별, 연령차별 등)를 어떻게 묘사하는지에 관심을 가지고 해결해 나가야 할 것이다. 그러나 아직 거대언어모델에서 공연예술의 차별 이슈에 대한 본격적인 조사와 논의는 이루어지지 않고 있다. 따라서 본 연구의 목적은 거대언어모델로부터의 공연예술 분야 차별이슈 인식 양상을 텍스트 분석하고 이로부터 공연예술분야가 대응할 시사점과 거대언어모델 개발 시사점을 도출하는 것이다. 먼저 거대언어모델에게 차별에 대한 감수성을 측정하기 위해 9가지 차별 이슈에 대한 BBQ(Bias Benchmark for QA) 질문 및 측정법을 사용했으며, 대표적인 거대언어모델로부터 도출된 답변에 대해서 공연예술 전문가에 의해 거대언어모델이 잘못 인지한 부분이 있는지의 검증을 거친 후에 내용분석법을 통해 공연예술분야의 차별적 관점의 윤리성에 대한 거대언어모델의 인식을 분석하였다. 분석 결과로 공연예술 분야에게 주는 시사점과 거대언어모델 개발 시 주의할 점 등을 도출하고 토의하였다.

개인 맞춤형 수학 학습을 위한 인공지능 교육시스템의 기능과 적용 사례 분석 (Analysis of functions and applications of intelligent tutoring system for personalized adaptive learning in mathematics)

  • 성지현
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제62권3호
    • /
    • pp.303-326
    • /
    • 2023
  • 수학은 계통성이 강한 학문으로 이전 단계에서의 학습 결손이 다음 학습에 큰 영향을 주기 때문에 학생들의 학습이 잘 이루어졌는지 수시로 확인하고, 즉각적으로 피드백을 제공해 주는 것이 필요하며, 이를 위해 수학교육에서 인공지능 교육시스템(ITS)을 활용할 수 있다. 이에 본 연구에서는 개인 맞춤형 수학 학습을 실행하기 위해 적용될 수 있는 인공지능 교육시스템의 기능이 무엇인지 살펴보고, 이를 실제로 적용해 본 결과를 분석하여 인공지능 교육시스템을 활용한 개인 맞춤형 수학 학습의 효과성을 구체적으로 살펴보는 것을 목적으로 하였다. 이를 위해 개인 맞춤형 학습과 수학교육에서 인공지능이 활용된 선행연구 내용을 분석하여 개인 맞춤형 수학 학습을 위한 인공지능 교육시스템의 기능을 추출하고, 이것을 반영한 학습 및 수업을 설계하여 초등학교 5학년 학생들에게 약 3개월 간 적용해 본 결과를 분석하였다. 그 결과, 개인 맞춤형 수학 학습을 위해 활용될 수 있는 인공지능 교육시스템의 기능은 크게 진단 및 평가, 분석 및 예측, 피드백 및 콘텐츠 제공으로 나눌 수 있었다. 또한 이러한 기능을 반영한 학습 설계를 초등학생들에게 적용한 결과, 개인 맞춤형 수학 학습에 인공지능 교육시스템이 어떻게 효과적으로 활용될 수 있는지에 대한 시사점을 얻었다. 그리고 앞으로 인공지능 교육시스템을 활용한 개인 맞춤형 수학 학습이 더욱 효과적으로 이루어질 수 있기 위해 더 정교한 기술과 자료 개발이 필요하다는 점을 제언하였다.

그래프 임베딩을 활용한 코로나19 가짜뉴스 탐지 연구 - 사회적 참여 네트워크의 이용 여부에 따른 탐지 성능 비교 (A study on the detection of fake news - The Comparison of detection performance according to the use of social engagement networks)

  • 정이태;안현철
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.197-216
    • /
    • 2022
  • 인터넷 및 모바일 기술의 발달과 소셜미디어의 확산으로 인해 다량의 정보들이 온라인 상에서 생성, 유통되고 있다. 이중에는 대중에게 도움이 되는 유익한 정보들도 있지만, 역기능을 하는 이른바 가짜뉴스들도 함께 유통되고 있다. 지난 2020년 코로나19의 전세계적인 확산 이후, 온라인 상에는 이와 관련한 수많은 가짜뉴스들이 유통되었다. 다른 가짜뉴스들과 달리 코로나19와 관련된 가짜뉴스는 사람들의 건강, 나아가 생명까지 위협할 수 있다는 점에서 그 심각성이 매우 크다고 할 수 있다. 때문에 코로나19와 관련한 가짜뉴스를 자동으로 탐지하고, 이를 예방하는 지능형 기술은 사회적 건강도를 제고하는데 매우 의미 있는 연구주제라 할 수 있다. 이러한 배경에서 본 연구에서는 코로나19 관련 가짜뉴스 탐지를 효과적으로 수행하기 위해 그래프 임베딩 방법 중 하나인 Graph2vec을 활용한 방법을 제안한다. 가짜뉴스 탐지에 대한 주류 방법은 뉴스 콘텐츠 기반 즉, 텍스트에 대한 특징 분석으로 진행되었으나 본 연구에서는 사회적 참여 네트워크 내에서의 정보 전달 관계를 추가로 활용함으로써 보다 효과적으로 코로나19와 관련된 가짜뉴스를 탐지할 수 있었으며 성능 측면에서 정확도 향상을 확인할 수 있었다.

품사별 출현 빈도를 활용한 코로나19 관련 한국어 가짜뉴스 탐지 (COVID-19-related Korean Fake News Detection Using Occurrence Frequencies of Parts of Speech)

  • 김지혁;안현철
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.267-283
    • /
    • 2023
  • 2019년 12월부터 현재까지 지속되고 있는 코로나19 팬데믹으로 인해 대중들은 감염병 대응을 위한 정보를 필요로 하게 되었다. 하지만 소셜미디어에서 유포되는 코로나19 관련 가짜뉴스로 인해 대중들의 건강이 심각하게 위협받고 있다. 특히 코로나19와 관련된 가짜뉴스가 유사한 내용으로 대량 유포될 경우 사실인지 거짓인지 진위를 가리기 위한 검증에 소요되는 시간이 길어지게 되어 우리 사회의 전반에 심각한 위협이 될 수 있다. 이에 학계에서는 신속하게 코로나19 관련 가짜뉴스를 탐지할 수 있는 지능형 모델에 대한 연구를 활발하게 수행해 오고 있으나, 대부분의 기존 연구에 사용된 데이터는 영문으로 구성되어 있어 한국어 가짜뉴스 탐지에 대한 연구는 매우 드문 실정이다. 이에 본 연구에서는 소셜 미디어 상에서 유포되는 한국어로 작성된 코로나19 관련 가짜뉴스 데이터를 직접 수집하고, 이를 기반으로 한 지능형 가짜뉴스 탐지 모델을 제안한다. 본 연구의 제안모델은 언어학적 특성 중 하나인 품사별 빈도 정보를 추가적으로 활용하여, 기존 연구에서 주로 사용되어 온 문서 임베딩 기법인 Doc2Vec 기반 가짜뉴스 탐지 모델의 예측 성능을 제고하고자 하였다. 실증분석 결과, 제안 모델이 비교 모델에 비해 Recall 및 F1 점수가 높아져 코로나19 관련 한국어 가짜뉴스를 보다 정확하게 판별함을 확인하였다.

텍스트마이닝과 ChatGPT 분석을 활용한 기업과 대중의 ESG 인식 비교: 지속가능경영보고서와 소셜미디어를 기반으로 (Comparing Corporate and Public ESG Perceptions Using Text Mining and ChatGPT Analysis: Based on Sustainability Reports and Social Media)

  • 최재훈;양성병;윤상혁
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.347-373
    • /
    • 2023
  • 최근 기업의 지속가능한 성장을 이끄는 ESG(Environmental, Social, and Governance) 관리의 중요성이 강조되고 있다. 이에, 본 연구는 기업과 일반 대중 간의 ESG에 대한 인식 차이를 실증적으로 밝히고, ESG 정책의 시행을 방해하는 부정적인 여론과 그 배경을 규명하는 것을 목표로 한다. 이를 위해, LDA(Latent Dirichlet Allocation) 토픽모델링, JST(Joint Sentiment Topic Modeling) 및 의미연결망분석 기법을 사용하여 지속가능경영보고서와 소셜미디어에서의 주요 키워드와 토픽, 그리고 그 연결관계를 분석하였다. 또한, ChatGPT를 활용하여, 텍스트마이닝 분석의 결과를 보완하였다. 분석 결과, 기업과 일반 대중 간 ESG에 대한 인식과 중요도에 상당한 차이가 있음을 확인하였다. 구체적으로, 기업들은 위기 관리, 투명한 지배구조, 윤리적 경영 등에 집중하여 신뢰를 구축하려 했으나, '그린워싱', '중대재해', '불매운동' 등과 같은 부정적 키워드가 자주 소셜네트워크에서 등장하여, 많은 대중들이 기업의 ESG 이슈 처리에 대해 의심하고 있음을 확인하였다. 본 연구는 기업, 정부 기관, 고객 및 투자자를 위한 ESG 전략수립에 도움이 될 수 있는 가이드라인을 제공한다는 점에서 의의가 있다.

RFE-SHAP을 활용한 온라인 리뷰를 통한 고객 만족도 예측 (Prediction of Customer Satisfaction Using RFE-SHAP Feature Selection Method)

  • 체르냐예바 올가;홍태호
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.325-345
    • /
    • 2023
  • 본 연구는 온라인 리뷰를 이용하여 고객 만족도를 예측하는 새로운 접근 방식을 제안한다. LDA 주제 모델링과 결합된 RFE-SHAP 기능 선택 방법을 활용하여 고객 만족도에 큰 영향을 미치는 주요 기능을 식별하여 예측 분석을 개선했다. 먼저 Random Forest 알고리즘의 경우, 초기 28개 입력변수에서 14개의 변수를 최적 하위 집합으로 추출했다. 제안된 방법에서 Random Forest 모델의 성과는 84%로 확인 되었으며 변수가 많은 모델에서 흔히 발생하는 과적합을 방지하였다. 또한 품질, 착용감, 내구성 등과 같은 리뷰의 특정 요소들이 패션 산업 내에서 소비자 만족도를 증진시키는 중요한 역할을 한다는 사실을 밝혀냈다. 본 연구는 예측 결과를 설명할 때 선택한 각 기능이 고객 만족도에 어떻게 영향을 미치는지에 대한 자세한 설명을 제공하고 고객이 가장 중요하게 생각하는 측면에 대한 세부적인 보기를 제공한다. 본 연구의 공헌도는 다음과 같다. 첫째, 전자상거래 분석 분야 내에서 예측 모델링을 강화하고 특성 중심적인 접근법을 소개함으로써 방법론을 개선하였다. 이는 고객 만족도 예측의 정확도를 높일 뿐만 아니라 예측 모델에서의 변수 선택에 대한 새로운 접근을 제시한다. 둘째, 특히 의류 부문에서 전자상거래 플랫폼에 구체적인 통찰력을 제공한다. 품질, 사이즈, 내구성 등 고객 리뷰의 어떤 부분이 만족도에 가장 큰 영향을 미치는지 강조함으로써, 기업들이 제품과 서비스를 맞춤화 할 수 있는 전략적 방향을 제시한다. 이러한 목표 지향적인 개선은 고객의 쇼핑 경험을 개선하고, 만족도를 향상시키면서 충성도를 이끌어낼 수 있을 것으로 기대한다.

평점 예측 모델 개발을 위한 관광지 만족도 정량 지수 구축: 제주도 관광지 리뷰를 중심으로 (Development of a Tourist Satisfaction Quantitative Index for Building a Rating Prediction Model: Focusing on Jeju Island Tourist Spot Reviews)

  • 윤동규;박기태;최상현
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.185-205
    • /
    • 2023
  • 코로나19 팬데믹 이후 관광 산업이 회복되면서 많은 관광객들이 다양한 플랫폼을 활용하고 리뷰를 남기고 있지만, 대량의 데이터 속에서 유용한 정보를 찾기 어려워 아직도 여행지 선정 과정에서 많은 시간과 비용이 낭비되고 있다. 이에 따라 많은 연구들이 진행되고 있지만, 평점이 없거나 플랫폼별로 다른 형태의 평점 제공으로 인해 연구에 한계를 가지고 있으며, 평점과 리뷰 내용이 일치하지 않는 경우도 있어 추천 모델 구축에 어려움을 주고 있다. 본 연구에서는 이러한 문제를 해결하기 위해 7,104개의 제주도 지역 관광지 리뷰를 활용하여 제주도에 특화된 관광지 만족도 정량 지수를 개발하고 이를 활용하여 '평점 예측 모델'을 구축하였다. 모델의 성능을 확인하기 위해 실험 데이터 700건의 평점을 본 연구에서 개발된 모델과 LSTM을 활용하여 예측 하였으며, 제안된 모델이 LSTM 보다 약 4.67% 높은 73.87%의 가중 정확도로 성능이 더 우수한 것을 확인하였다. 본 연구의 결과를 통해 평점과 리뷰 내용 사이의 불일치 문제를 해결하고, 평점이 없는 리뷰나 다양한 형태의 평점을 정형할 수 있으며, 다른 도메인에 적용하여 여행의 모든 분야에서 신뢰할 수 있는 평점 지표를 제공할 수 있을 것으로 기대된다.

분류 모델을 활용한 AI 기반 화학 I 수업의 효과에 대한 연구 (An Investigation Into the Effects of AI-Based Chemistry I Class Using Classification Models)

  • 양희선;안성혁;김승현;강성주
    • 대한화학회지
    • /
    • 제68권3호
    • /
    • pp.160-175
    • /
    • 2024
  • 본 연구의 목적은 AI 분류 모델을 기반으로 한 화학 I 수업의 효과를 검토하고자 한다. 이를 위하여 경북 D 고등학교에서 2023년 1학기에 시행된 화학 I 수업에서 AI 분류 모델을 활용한 수업의 개발과 적용 후 그 변화를 탐색하였다. 교과 내용과 AI 도구를 선정하고 교과-AI융합 교육 모형 및 AI 하드웨어 소프트웨어를 결정한 후, 프로그램의 세부 활동을 개발하여 실제 수업에 적용하였다. 수업 적용 후, 학생들의 화학 개념 형성, AI 가치 인식, AI 기반 메이킹 역량의 세가지 측면에서 자기 효능감이 향상되었음이 확인되었다. 구체적으로, 텍스트 및 이미지 분류 모델 기반의 화학 수업이 학생들의 화학 개념 형성에 대한 자아 효능감에 긍정적인 영향을 미쳤으며, 학생들의 AI 가치 인식과 흥미를 증진시켰고, 학생들의 AI와 피지컬 컴퓨팅 능력을 향상시키는데 기여하였다. 이러한 결과는 AI 분류 모델을 기반으로 한 화학 I 수업이 학생들에게 긍정적인 영향을 미침을 보여주며, 교육현장에서의 유용성을 입증한다.

딥러닝 기반 비디오 캡셔닝의 연구동향 분석 (Analysis of Research Trends in Deep Learning-Based Video Captioning)

  • 려치;이은주;김영수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제13권1호
    • /
    • pp.35-49
    • /
    • 2024
  • 컴퓨터 비전과 자연어 처리의 융합의 중요한 결과로서 비디오 캡셔닝은 인공지능 분야의 핵심 연구 방향이다. 이 기술은 비디오 콘텐츠의 자동이해와 언어 표현을 가능하게 함으로써, 컴퓨터가 비디오의 시각적 정보를 텍스트 형태로 변환한다. 본 논문에서는 딥러닝 기반 비디오 캡셔닝의 연구 동향을 초기 분석하여 CNN-RNN 기반 모델, RNN-RNN 기반 모델, Multimodal 기반 모델, 그리고 Transformer 기반 모델이라는 네 가지 주요 범주로 나누어 각각의 비디오 캡셔닝 모델의 개념과 특징 그리고 장단점을 논하였다. 그리고 이 논문은 비디오 캡셔닝 분야에서 일반적으로 자주 사용되는 데이터 집합과 성능 평가방안을 나열하였다. 데이터 세트는 다양한 도메인과 시나리오를 포괄하여 비디오 캡션 모델의 훈련 및 검증을 위한 광범위한 리소스를 제공한다. 모델 성능 평가방안에서는 주요한 평가 지표를 언급하며, 모델의 성능을 다양한 각도에서 평가할 수 있도록 연구자들에게 실질적인 참조를 제공한다. 마지막으로 비디오 캡셔닝에 대한 향후 연구과제로서 실제 응용 프로그램에서의 복잡성을 증가시키는 시간 일관성 유지 및 동적 장면의 정확한 서술과 같이 지속해서 개선해야 할 주요 도전과제와 시간 관계 모델링 및 다중 모달 데이터 통합과 같이 새롭게 연구되어야 하는 과제를 제시하였다.

생성형AI의 환각현상 최소화를 위한 요인 탐색 연구 - 소비자의 감성·경험 분석을 중심으로- (Exploring Factors to Minimize Hallucination Phenomena in Generative AI - Focusing on Consumer Emotion and Experience Analysis -)

  • 안진호;정욱환
    • 서비스연구
    • /
    • 제14권1호
    • /
    • pp.77-90
    • /
    • 2024
  • 본 연구는 소비자의 감성과 경험이 중요한 서비스 분야에서 생성형 인공지능을 활용하는 방법에 대한 조사를 목표로 활용시의 환각 현상을 최소화하고, 소비자의 감성 및 경험에 대한 전략적 서비스를 개발하는 것에 초점을 맞추고 있다. 이를 위해 기계적인 방식의 접근과 사용자가 프롬프트를 직접 생성하는 방식을 검토하였고, 사업아이템 정의 제공, 페르소나 특성 값 제공, 예시와 맥락형 동사명령, 출력 포멧과 톤 컨셉 지정 등의 프롬프트 생성 요인을 중심으로 실험적으로 적용하였다. 연구는 생성형 AI가 제공하는 맞춤형 콘텐츠의 정확성과 사용자 만족도를 향상시키는 데 기여할 수 있는 방안을 탐색한다. 또한, 이러한 접근 방식은 생성형 인공지능을 실제 서비스에 적용 시 발생할 수 있는 환각 현상 중심의 문제들을 해결하는 데 중요한 역할을 하며, 생성형 인공지능을 통한 소비자 서비스 혁신에 기여할 것으로 기대한다. 연구 결과는 소비자의 감성과 경험을 풍부하게 해석하는데 생성형 인공지능이 중요한 역할을 할 수 있음을 보여주며, 이는 다양한 산업 분야에서의 활용 가능성을 넓히고, 기술 발전을 넘어 소비자 감성 및 경험 전략의 새로운 방향을 제시할 것으로 기대한다. 하지만, 아직은 연구가 생소한 생성형 AI 기술 기반의 연구를 진행함으로써 미흡한 부분이 많다. 향후 연구에서는 더 다양한 산업 환경 적용으로 연구요인들의 범용성과 조건별 효과를 더 깊이 탐구할 필요가 있다. 또한, AI 기술의 급속한 발전에 따라 새로운 형태의 환각 증상과 이에 대응하는 새로운 전략 개발에 관한 연구가 지속해서 이루어져야 할 것이다.