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1)1. Introduction

Video captioning is a complex task aimed at automati-

cally generating descriptive and informative textual de-

scriptions. This process involves a deep understanding of 

the visual content of videos and converting it into natural 
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language expressions. Due to the specificity of video data, 

it is necessary to understand the objects, attributes, ac-

tions [1-3], and events in the video, as well as establish 

temporal and semantic contextual relationships [4-8]. 

Common video captioning applications encountered in 

daily life include: providing access to videos for visually 

impaired and hearing-impaired individuals, real-time de-

scriptions of surveillance footage, and retrieval of online 

video content [9].

With the emergence of excellent deep learning models, 

significant progress has been made in the development of 

temporal relationships, semantic coherence, and contex-
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요     약

컴퓨터 비전과 자연어 처리의 융합의 중요한 결과로서 비디오 캡셔닝은 인공지능 분야의 핵심 연구 방향이다. 이 기술은 비디오 콘텐츠의 자동 

이해와 언어 표현을 가능하게 함으로써, 컴퓨터가 비디오의 시각적 정보를 텍스트 형태로 변환한다. 본 논문에서는 딥러닝 기반 비디오 캡셔닝의 

연구 동향을 초기 분석하여 CNN-RNN 기반 모델, RNN-RNN 기반 모델, Multimodal 기반 모델, 그리고 Transformer 기반 모델이라는 네 가지 

주요 범주로 나누어 각각의 비디오 캡셔닝 모델의 개념과 특징 그리고 장단점을 논하였다. 그리고 이 논문은 비디오 캡셔닝 분야에서 일반적으로 

자주 사용되는 데이터 집합과 성능 평가방안을 나열하였다. 데이터 세트는 다양한 도메인과 시나리오를 포괄하여 비디오 캡션 모델의 훈련 및 

검증을 위한 광범위한 리소스를 제공한다. 모델 성능 평가방안에서는 주요한 평가 지표를 언급하며, 모델의 성능을 다양한 각도에서 평가할 수 

있도록 연구자들에게 실질적인 참조를 제공한다. 마지막으로 비디오 캡셔닝에 대한 향후 연구과제로서 실제 응용 프로그램에서의 복잡성을 증가시키

는 시간 일관성 유지 및 동적 장면의 정확한 서술과 같이 지속해서 개선해야 할 주요 도전과제와 시간 관계 모델링 및 다중 모달 데이터 통합과 

같이 새롭게 연구되어야 하는 과제를 제시하였다. 
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tual understanding in videos, which has driven the advan-

cement of video captioning technology. However, the field 

of video captioning still faces challenges.

This paper provides a systematic analysis of the appli-

cations of deep learning in video caption generation and 

points out future research directions. To be more specific, 

we first explore the basic principles and pros and cons of 

several representative methods in video caption genera-

tion in recent years. Next, we summarize commonly used 

datasets and representative evaluation metrics in video 

captioning. Finally, we discuss other issues in existing re-

search, challenges in video captioning, and future research 

directions.

Chapter 2 provides a comprehensive overview of the 

latest advancements in video captioning technologies. It 

delves into various research studies, methodologies, and 

approaches employed in the field. In Chapter 3, datasets 

commonly used for video captioning evaluation, along 

with the associated evaluation metrics, are introduced. The 

challenges faced in video captioning are thoroughly dis-

cussed in Chapter 4, followed by the proposal of future 

research directions to address these challenges. Finally, 

Chapter 5 comprehensively summarizes the key findings 

and contributions of this article, highlighting the main 

points and insights derived from the research.

2. Approaches to Video Captioning Research

This section aims to review various methods utilized in 

the field of video captioning, primarily focusing on four 

distinct strategies based on deep learning: CNN-RNN, 

RNN-RNN, Transformer-based, and Multimodal approaches. 

Fig. 1 shows the four methods of video captioning in the 

captioning generation challenge. By providing detailed 

explanations of these approaches, it highlights the con-

tinuous development of video captioning technology. CNN 

(Convolution Neural Network) have revolutionized image 

tasks, including object detection and image classification. 

RNN(Recurrent Neural Network) excel in processing se-

quential data for natural language tasks, aiding in ma-

chine translation and text classification. As a result, these 

advancements have provided powerful tools for language 

modeling, machine translation, and more. The innovation 

of video captioning technology benefits from the develop-

ment of deep learning. By conducting in-depth research 

on different methods, a better understanding of the devel-

opment in this field can be achieved, offering support for 

future research and practice.

2.1 CNN-RNN based Model

The CNN-RNN model is a well-established architecture 

in video captioning, primarily achieving the task of trans-

lating video content into text by combining the visual 

processing capability of CNN with the sequence gen-

eration capability of RNN. As shown in Fig. 2, The CNN 

and RNN respectively play the roles of encoder and 

decoder. The output of the encoder serves as input to the 

decoder, which generates captions based on the encoded 

information.

In 2014, Venugopalan et al. [10] introduced a deep 

learning model for end-to-end translation of video2text. 

They employed a pre-trained CNN to extract image fea-

tures, transformed them into fixed-length representations, 

and then fed these representations into a two-layer LSTM 

to decode them into word sequences, generating text. The 

advantage of this method is the elimination of the need 

for traditional multi-step processing, simplifying the pro-

cess. However, this approach has limitations in adequately 

considering temporal information in video processing, 

which may constrain its performance on longer videos.

In 2015, Li Yao et al. [4] proposed a method that com-

bines 3D CNN (3D Convolutional Networks) to capture 

temporal characteristics of dynamic representations and 

utilizes a pre-trained GoogleNet[11] to extract spatial 

features. They also selected Histograms of HoG, HoF and 

MbH(Oriented Gradients, Oriented Flow, and Motion Boun-

dary) to accurately extract motion features of local tem-

Fig. 1. An overview of Captioning Generation Problem

Fig. 2. Video Captioning Tasks based on CNN-RNN Model
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poral structures, reducing the computational cost of the 

3D CNN. They introduced temporal attention mechanism 

based on soft attention to selectively attend to and proc-

ess key temporal vectors, which were then input into an 

LSTM-based decoder to produce captions.

In 2017, Gan Z et al. [5] introduced the SCN(Semantic 

Compositional Network). They emphasized that incor-

porating semantics can lead to improved video captioning 

generation with interpretability. The model employed 

ResNet [12] and C3D(Convolutional 3D) [13] to extract 

features from images and videos, detected semantics to 

determine the probabilities of respective labels, and input 

semantic features and visual features into the LSTM(Long 

Short Term Memory) [14] to generate captions.

In 2020, Chen H et al. [6] pointed out several issues in 

previous video captioning works, including the lack of 

meaningful semantic features, performance differences 

among different generation strategies, and inadequate 

representation of video content. They proposed metrics to 

measure meaningful features and used them as input to 

the SDN(Semantic Detection Network). In the encoding 

stage, they extracted video frame and video features using 

ResNeXt [15] and ECO(Efficient convolutional network) 

[16], respectively, concatenated the two features, and ob-

tained Semantic Features. During the decoding stage, 

SDN-enhanced LSTM was implemented to effectively cap-

ture the temporal information of the video. This approach 

mitigates the issues of gradient vanishing or exploding, 

resulting in descriptions that are more closely aligned with 

the video content.

In 2021, Perez-Martin J et al. [17] introduced the 

SemSynAN(Visual-Semantic-Syntactic Aligned Network), 

which leverages combinations of visual, semantic, and  

syntactic representations to generate superior captions 

from  the decoder. In the encoding stage, they used CNN 

and 3D-CNN were employed to extract features from both 

individual video frames and videos. They then employed 

concept detectors to retrieve relevant keywords and ob-

tain semantic representations. Finally, Visual-Syntactic 

Embedding is used to map visual features into a common 

space with word labels for alignment processing. In the 

decoding stage, they employed three dedicated RNN lay-

ers: v-se-LSTM (Visual-Semantic Layer), v-sy-LSTM (Visual- 

Syntactic Layer), and se-sy-LSTM (Semantic-Syntactic Layer), 

along with time attention mechanisms and integration 

gates, to accurately retrieve information from the visual 

and semantic syntax-related layers.

In 2022, Yan et al. [18] proposed the GL-RG (Global-lo-

cal representation granularity) to capture global-local rep-

resentations within video frames sufficiently. The model 

consists of three parts in the encoder to model different 

video scopes. The Long-range Encoder employs CNN to 

build context features and uses 3D CNN to capture global 

temporal correspondences, guiding vocabulary generation. 

The Short-range Encoder captures motion using CNN and 

3D-Resnet18 [19]. The Local-keyframe Encoder learns lo-

cal semantic vocabulary using a residual network and 

generates integrated features through linear layers. In the 

decoding stage, LSTM [14] is used to convert integrated 

features into word sequences for caption generation.

Table 1 shows the models, datasets and evaluation re-

sults used in the CNN-RNN-based model. Although the 

MODEL Dataset BLUE-4/% METEOR/% CIDEr/% ROUGE-L/%

2014, Venugopalan et al. [10] CNN+LSTM [14] MSVD [47] 30.77 27.66 - -

2015, Li Yao et al. [4] 3D CNN+LSTM [14]
Youtube2Text 

(MSVD) [47]
41.92 29.6 51.67 -

Gan Z et al. [5]
ResNet [12] and C3D 

[13]+LSTM [14]

Youtube2Text 

(MSVD) [47]
51.10 33.50 77.70 -

Charades [50] 14.50 18.40 23.70 -

2020, Chen H et al. [6]
ResNeXt [15] and 

ECO [16] + S-LSTM

Youtube2Text 

(MSVD) [47]
62.40 39.00 109.70 77.00

MSR-VTT [48] 45.80 29.30 53.20 63.60

2021, Perez-Martin J et al. [17]

CNN and 3D CNN+ 

v-se-LSTM v-sy-LSTM 

and se-sy-LSTM

MSVD [47] 64.40 41.90 111.50 79.50

MSR-VTT [48] 46.40 30.40 51.90 64.70

2022, Yan et al. [18]
CNN and 3D 

CNN+LSTM [14]

MSR-VTT [48] 46.90 30.40 55.00 63.90

MSVD [47] 57.70 38.60 95.90 74.90

Table 1. Models, Datasets, and Evaluation Results used in CNN-RNN based Video Captioning Methods
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CNN-RNN model is simpler and performs better com-

pared to traditional models, there are still some chal-

lenges:

Firstly, using only CNN or 3D CNN for visual processing 

fails to capture the temporal relationships of the entire 

video, thereby leading to a deficiency in video context. 

Secondly, as the sequence length increases, RNN may fail 

to capture distant information.

2.2 RNN-RNN based Model

The RNN-RNN model bears similarities to the seq2seq 

model. As shown in Fig. 3, two different RNNs are used 

as an encoder and a decoder. The primary distinction be-

tween the RNN-RNN model and the CNN-RNN model lies 

in the fact that the former commonly utilizes a CNN+RNN 

architecture as its encoder. This approach enables better 

modeling of video data, which is based on temporal se-

quences.

In 2015, Venugopalan et al. [9] introduced the S2VT 

(Sequence to sequence-video to text), which innovatively 

utilized the Sequence-to-Sequence model for video de-

scription purposes. For feature extraction, they used 

VGG-16 [20] to extract features from video frames, which 

were then fed as inputs to an LSTM [14] to learn sequence 

representations of the frames. Additionally, they improved 

object activity classification using Optical Flow [21]. 

Two-layer LSTMs were used in both the encoder and de-

coder, with the first layer handling video feature input 

and the second layer constructing hidden representations 

of both text and video sequences for text generation.

In 2015, Donahue et al. [22] proposed the LRCN (Long- 

term recurrent convolutional networks), which combines 

CNNs for image feature extraction and LSTMs for video 

caption generation. CNNs were used to extract image fea-

tures, and these features were then provided as input to 

an LSTM, which in turn served as the input to the decoder 

LSTM responsible for generating video descriptions.

In 2016, Pan et al. [23] introduced the HRNE (Hierar-

chical recurrent neural encoder), an encoder-decoder 

architecture. They utilized GoogleNet [11] for extracting 

frame-level features and used linear embedding of these 

features as model inputs. In the encoding phase, a 

two-layer LSTM processed the input information, with the 

first LSTM performing modeling at a local time scale and 

the second LSTM capturing long-term dependencies in the 

video sequence. To capture local temporal structure more 

effectively, they designed a receptive field similar to a 

convolutional neural network, which improved the encod-

ing of video sequences and provided robust semantic  

phase to receive encoder information and generate 

captions.

In 2017, Gao et al. [24] introduced aLSTM (attention- 

based LSTM). They used Inception-v3 [25] to extract video 

frame features during the encoding phase and utilized an 

LSTM to obtain a holistic understanding of the video. In 

the decoding phase, they incorporated an attention mech-

anism to leverage contextual information and selectively 

retrieve crucial semantic information, resulting in more 

accurate and meaningful descriptions compared to pre-

vious methods.

In 2018, Wang, Ma, Zhang, et al. [7] proposed the 

RecNet (Reconstruction Network), which represented a 

departure from previous approaches. The model in-

troduces the concept of a 'Reconstructor' to generate text 

consistent with video content, going beyond mere con-

tent-based generation. It reconstructs the overall structure 

of the video through Mean Pooling applied to the hidden 

state sequence produced by the decoder, addressing both 

local and global structures. The Reconstructing Local 

Structure component used soft attention on the decoder's 

hidden state sequence to select key hidden states, improv-

ing the reconstruction of local structural information in 

video frames. RecNet incorporated a bidirectional learn-

ing mechanism for both forward (video2text) and reverse 

(text2video) flows, thereby enhancing video captioning 

tasks.

In 2020, Zhang and Peng [1] introduced the OSTG 

(object-aware spatio-temporal graph), considering object 

recognition and spatiotemporal correlation and aggreg-

ation. OSTG consisted of three main parts: global context 

encoder, the temporal relation encoder, and spatial rela-

tion encoder. The temporal relation encoder learned spa-

tiotemporal paths of object regions. Using VLAD (Vector 

of Locally Aggregated Descriptors) [26], local features of Fig. 3. Video Captioning Tasks based on RNN-RNN Model
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object regions were extracted, and ConvGRUs (Convolu-

tional Gated Recurrent Unit) captured spatiotemporal fea-

tures of object regions. The spatial relation encoder en-

coded spatial interactions between different objects. It 

built spatial relation graphs based on visual feature sim-

ilarity, spatial overlap, and center point distances among 

objects, applying GCN(Graph Convolutional Networks) [27] 

to model inter-object relationships. The global context 

encoder captured the global context by aggregating fea-

tures of global frames with VLAD and integrating local 

features into global VLAD representations. During the de-

coding phase, considering the information from three en-

coders, hierarchical attention and temporal attention are 

used to determine the importance of each temporal step 

in the region. The encoded information from the encoders 

is fed into two GRUs (Gated Recurrent Units) [59] to gen-

erate captions.

Table 2 shows the models, datasets and evaluation re-

sults used in the RNN-RNN-based model. Although the 

RNN-RNN model can effectively consider the temporal in-

formation of videos and model the dynamic changes and 

event sequences, the increase in sequence length can lead 

to gradient vanishing or explosion, which affects the 

quality of generated descriptions. Furthermore, it lacks 

complex modeling capabilities for scenes with deep se-

mantic content.

2.3 Transformer based Model

Fig. 4 presents an approach based on the Transformer 

model, which utilizes its encoder and decoder compo-

nents. Typically, CNN models are  used as input for the 

encoder. The decoder then generates more accurate, vivid 

and coherent subtitles.

In 2018, Zhou L et al. [28] proposed a model to address 

the problem of separately training temporal proposals and 

caption models. This model consists of Video Encoder 

Stack, Proposal Decoder, and Caption Decoder. It utilizes 

attention to encode consecutive frames for visual features. 

The Proposal Decoder employs a TCN (Temporal Con-

volutional Network) to generate event proposals from the 

visual features of the video encoder. Finally, the event 

proposals and visual features are fed into the Caption 

Decoder, facilitating the generation of video captions.

In 2020, Pan et al. [2] introduced a graph-based model 

that effectively captures object interactions in both spatial 

and temporal dimensions. They use an object-aware 

knowledge refinement mechanism to enhance caption 

generation performance. This model represents objects as 

nodes and their relationships as edges. In the encoding 

phase, they extract scene and object features from frames 

Fig. 4. Video Captioning Tasks based on Transformer

　 MODEL Dataset BLUE-4/% METEOR/% CIDEr/% ROUGE-L/%

2015, Venugopalan S et 
al. [9]

VGG-16 [20]+ and 
LSTM [14]+LSTM [14]

MSVD [47] - 29.20 - -

MPII-MD [54] - 7.10 - -

M-VAD [55] - 6.70 - -

2015, Donahue J et al. 
[22]

CNN and LSTM+Two layer 
LSTM

TACoS 
multi-level [61]

28.80 - - -

2016, Pan P et al. [23] HRNE+LSTM [14] MSVD [47] 43.80 6.80 - -

2017, Gao L et al. [24]
Inception-v3 [25] and 
LSTM [14] + aLSTM

MSVD [47] 50.80 33.30 74.80 -

MSR-VTT [48] 38.00 26.10 43.20 -

2018, Wang B et al. [7]
Inception-V4 [62] and 
LSTM [14] + SA-LSTM

MSVD [47] 52.30 34.10 80.30 69.80

2020, Zhang J, Peng Y. 
[21]

object detection、C-GRU 
and GCN [27]+GRU [59]

MSVD [47] 57.50 36.80 92.10 -

MSR-VTT [48] 41.90 28.60 48.20 -

Table 2. Models, Datasets, and Evaluation Results used in RNN-RNN based Video Captioning Methods
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using ResNet-101 [12] and Faster R-CNN [29]. Object fea-

tures are transformed into an adjacency matrix for graph 

representation, and a GCN [27] updates node features. In 

the decoding phase, they use the Transformer to train 

scenes and objects individually and introduce object- 

aware knowledge refinement to integrate different feature 

spaces, thereby generating video captions.

In 2021, Wang T et al. introduced the PDVC (video cap-

tioning with parallel decoding) [30] framework, a Trans-

former-based approach that achieves end-to-end dense 

video captioning using parallel decoding. They use a pre-

trained model in the encoding phase and maintain se-

quence information between frames through projection 

using linear layers and positional encoding. During the 

parallel decoding phase, an event counter is utilized to 

accurately determine the occurrence of events in the vid-

eo, facilitating the generation of complete and consistent 

video captions. The Localization head uses event query 

features to accurately predict event boundaries, providing 

precise timing information for caption generation. The 

Captioning head allows the direct generation of detailed 

captions for each event, enabling end-to-end dense video 

captioning.

In 2022, to address issues like redundant connections, 

smooth transitions, and relationship ambiguity within the 

Transformer framework, Li L et al. [3] proposed the LSTG 

(long short-term graph). The relationships between ob-

jects in terms of their spatial and temporal dimensions 

can be effectively captured by utilizing the STG (Short- 

Term Graph) and LTG (Long-Term Graph) methodologies. 

STG builds short-term spatial semantic relationships be-

tween objects for adjacent frames, considering relative 

positions and appearance similarities. In order to capture 

long-term dependencies and transformations between ob-

jects, LTG constructs connections among objects using a 

sparse approach. The LSRT(Long Short-Term Relation 

Transformer) module replaces the traditional self-atten-

tion mechanism [39] in the Transformer with a G3RM 

(Global Gated Graph Reasoning Module), which improves 

caption generation by providing accurate object position-

ing and temporal information.

In 2022, Ye H et al. [8] introduced the HMN (Hierarchi-

cal Modular Network), consisting of Entity Module, Predi-

cate Module, and Sentence Module, which take a detailed 

approach to caption generation. The Entity Module maps 

input objects to representations using a Transformer en-

coder-decoder architecture, generating semantic embed-

dings related to video content. The Predicate Module 

takes as input object features related to video motion and 

uses an attention mechanism and Bi-LSTM to encode 

motion. The Sentence Module integrates initial video con-

text features, motion features, and object features to gen-

erate captions by utilizing attention mechanisms for ag-

gregating relevant information and summarizing global 

video context. The Description Generator uses LSTM to 

generate captions step by step, considering three levels: 

video representations, language predictions, and previous 

words.

Table 3 shows the datasets and evaluation results used 

in the Transformer-based model. Despite the satisfactory 

performance of Transformer-based methods in video cap-

tioning generation, they encounter several challenges. 

One of the challenges is processing the temporal se-

quence information in videos, as videos consist of a col-

lection of frames that involve temporal evolution. 

Furthermore, it is necessary to conduct further research 

on effective integration methods of image features with 

text and audio information. Additionally, generating natu-

ral language descriptions that align with the content of 

the video is of utmost importance.

　 Dataset BLUE-4/% METEOR/% CIDEr/% ROUGE-L/%

2018, Zhou L et al. [28] ActivityNet Captions [49] 2.77 11.11 - -

2020, Pan B et al. [2]
MSVD [47] 52.20 36.90 93.00 73.90

MSR-VTT [48] 40.50 28.30 47.10 60.90

2021, Wang T et al. [30]
ActivityNet Captions [49] 1.96 8.08 28.59 -

YouCook2 [53] 0.80 4.70 22.71 -

2022, Li L et al. [3]
MSVD [47] 55.60 37.10 98.50 73.50

MSR-VTT [49] 42.60 28.30 49.50 61.00

2022, Ye H et al. [8]
MSVD [47] 59.20 37.70 104.00 75.10

MSR-VTT [49] 43.50 29.00 51.50 62.70

Table 3. Datasets, and Evaluation Results used in Transformer based Video Captioning Methods
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Fig. 5. Video Captioning Tasks based on Multimodal Model

2.4 Multimodal based Model

Fig. 5 is a model based on a multimodal approach that 

mainly combines multiple feature inputs, including video 

and audio in the video, to better understand the video 

content, and fuses these features through the encoder to 

generate accurate and coherent subtitle descriptions.

In 2016, Ramanishka et al. [31] proposed MMVD (Mul-

timodal Video Description), an extension of S2VT [9]. This 

model extracts features from 26 frames sampled at inter-

vals, including ResNet [12], C3D [13], and MFCC (Mel 

Frequency Cepstral Coefficients) [32]. Simultaneously, it 

represents video category information using one-hot en-

coding. The visual and audio features extracted are em-

bedded into a low-dimensional space to facilitate feature 

fusion. These fused features are then encoded using LSTM 

[14] and subsequently decoded to generate video descrip-

tions.

In 2019, Xu et al. [33] introduced the Semantic-Filtered 

Soft-Split-Aware Gated LSTM, which integrates semantic 

information with audio features to enhance the quality of 

captioning. Visual features of the video are obtained 

through ResNet [12] and 3D-ResNext, while audio features 

are augmented and appended to keyframe features 

through audio augmentation. The encoding phase consists 

of the SSAG-LSTM-E (Soft Split Recognition Gate Multi- 

layer LSTM Encoder), the SF-LSTM-E (Semantic Filtering 

LSTM Video Encoder) for capturing video features of the 

sequence, and the SSAG-LSTM-E for capturing video fea-

tures of the sequence. These features and SSAG-LSTM-E 

are used for processing videos with multiple segments.

In 2019, Sun et al. [34] proposed VideoBERT (Video Bi-

directional Encoder Representations from Transformers), 

aiming to address the data scarcity issue in video caption-

ing and overcome the limitations of fixed-length captions 

using a hierarchical vector quantization-based method. 

VideoBERT extends the BERT (Bidirectional Encoder Re-

presentations from Transformers) [35] and can learn ad-

vanced features from both video and language. In the vid-

eo processing phase, it extracts visual features using S3D 

(separable 3D CNN) [36], labels these features using hier-

archical k-means, and retrieves text from YouTube's ASR 

(automatic speech recognition) automatically. VideoBERT 

initializes with pre-training from the BERTLARGE model, 

takes visual and text features as input, and completes the 

final task.

In 2020, Ging S et al. proposed COOT (Cooperative 

Hierarchical Transformer) [37], which models different 

levels and modes. This model comprises Attention-aware 

Feature Aggregation and Contextual Transformer. Attention- 

aware feature aggregation methods extract local visual 

and semantic features from video and text, using attention 

mechanisms to interlink these features. The Contextual 

Transformer, with multiple transformer layers, learns both 

high-level and low-level information, ensuring semantic 

consistency across modes. It's employed to integrate local 

and global contexts in video content.

In 2020, Iashin and Rahtu [38] proposed the MDVC 

(Multi-modal Dense Video Captioning module), which uti-

lizes ASR to obtain temporally aligned textual descriptions 

of audio and uses them as separate inputs alongside video 

frames. This module adopts the Transformer [39] as a 

template and comprises two core modules: the Captioning 

Model and the Temporal Event Localization Model. The 

Temporal Event Localization Model is used to generate 

time intervals where events may occur in the video and 

uses the Bi-SST (Bidirectional Single-stream Temporal 

Action Proposal Network) for this purpose. The Caption-

ing Model generates descriptions for event proposals, uti-

lizing I3D (Inflated 3D ConvNet) [40] for visual features 

and VGGish [41] for audio features. These features, along 

with previous time-step word embeddings, are input into 

the Transformer [39], and its output combines all modal-

ities and estimates the probability distribution of the 

vocabulary.

In 2022, Luo et al. [42] proposed Clip4clip to address 

the problem of insufficient visual representation in video 

captioning. Clip4clip mainly consists of three modules. 

The first module is Video Encoder, that employs the 

VIT-B/32 model [43] to encode videos, dividing them into 

image blocks and forming interactions between these im-

age blocks through a Transformer [39] to obtain the final 

representation. The second module is Text Encoder, that 

directly utilizes the text encoder of the CLIP (Contrastive 

Language-Image Pre-training) [44]. The third module is 

Similarity Calculation part, that is divided into three types: 

Sequential type, parameter-free type and Tight type. The 

parameter-free type does not consider the temporal order 
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of frames and directly computes the similarity between 

video and text using average pooling of features from all 

frames. The Sequential type models video frame sequen-

ces with LSTM [14] or Transformer [39] encoders, captures 

temporal order between frames, and generates a semantic 

representation of the entire video, followed by computing 

the similarity between this representation and the text. 

The Tight model utilizes a Transformer [39] encoder for 

facilitating multimodal interaction between video and 

text. It predicts similarity through the use of linear layers, 

predicting similarity through linear layers.

In 2022, Seo and Ji [45] proposed a new generative pre-

training framework called MV-GPT (Multimodal Video 

Generative Pretraining). In the encoding phase, the Text 

Encoder uses BERT [35] to extract semantic features from 

text input and learn contextual relationships between 

words. On the other hand, the Visual Encoder utilizes the 

ViViT (Video Vision Transformer) from MV-GPT [46] as the 

video encoder. This allows the direct extraction of visual 

features from raw pixels, enabling end-to-end training and 

flexibility. These two encoders fuse information through a 

co-attentional transformer module, allowing for context 

and attention interactions between text and visual features. 

In the decoding phase, the decoder uses a self-attention 

mechanism [39] to process inputs and better capture de-

pendencies and contextual information between different 

modalities. Additionally, the decoder enhances the mod-

el's generation capability through Masked Language Mo-

deling (MLM) loss based on the current generated word.

Table 4 shows the models, datasets and evaluation re-

sults used in the Multimodal-based model. Although mul-

timodal caption generation can better understand the fu-

sion of visual and textual information, aligning the modal-

ities during fusion needs to be considered, as well as how 

to effectively integrate the modalities. Sometimes, the same 

event may be presented differently across different modal-

ities, and when fusing modalities, it is necessary to con-

sider the balance of weights between different modalities. 

Even in videos, there are cases where the shapes of ob-

jects change before and after multiple events, making it 

difficult to accurately connect them and infer the captions 

effectively.

3. Datasets and Evaluation for Video Captioning

3.1 Popular Datasets for Video Captioning

In this section, we will explain and introduce in detail 

some commonly used datasets. These datasets cover vari-

ous scenarios, including daily activities, movies, cooking, 

etc. The main method of data collection is to gather 

YouTube videos or movie clips.

1) MSVD: Microsoft Research Video Description Corpus

MSVD [47] is a dataset for video captioning research, 

　 MODEL Dataset BLUE-4/% METEOR/% CIDEr/% ROUGE-L/%

2016, Ramanishka 

V et al. [31]

ResNet [12], C3D [13], MFCC [32] 

and LSTM [14] +LSTM [14]
MSR-VTT [48] 40.70 28.60 46.50 61.00

2019, Xu Y 
et al. [33]

ResNet [12], C3D [13], Audio 

Feature and SSAG-LSTM
+LSTM [14]

MSR-VTT [48] 40.80 28.70 46.80 61.50

2019, Sun C, 
Myers A, Vondrick 
C, et al. [34]

S3D [36], ASR and BERT [35] 

and Transformer [39]
YouCook2 [53] 4.33 11.94 0.55 28.80

2020, Ging S 
et al. [37]

BERT[35], Resnet-152[12], 3D 
ResNext-101+ Transformer [39]

YouCook2 [53] 11.30 19.85 57.24 37.94

ActivityNet 
Captions [49]

10.85 15.99 28.19 31.45

2020, Iashin V, 
Rahtu E. [38] 

C3D [13], VGGish [41] and
I3D [40]ASR + Transformer [39]

ActivityNet 
Captions [49]

2.86 11.72 - -

2022, Luo H 
et al. [42]

VIT-B/32 [43], CLIP [44], 
LSTM [14] and + Transformer [39]

MSR-VTT [48] 49.80 31.40 59.70 65.70

MSVD [46] 55.90 36.90 122.60 73.90

2022, Seo P H 
et al. [45]

BERT [35] and ViViT [46] + 
Transformer [39]

MSR-VTT [47] 48.92 38.66 0.60 64.00

ActivityNet 
Captions [49]

6.84 12.31 - -

YouCook2 [53] 21.88 27.09 2.21 49.38

Table 4. Models, Datasets, and Evaluation Results used in Multimodal based Video Captioning Methods
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which was introduced by the University of Texas at Austin 

and Microsoft Research in 2011. This dataset comprises 

over 1,970 distinct video clips, covering various topics, 

scenes, and activities.

2) MSR-VTT: Microsoft Research Video to Text

MSR-VTT [48] is a comprehensive video dataset de-

signed specifically for video-to-text tasks. It consists of 

10,000 video clips with a total duration of 41.2 hours. The 

dataset includes 200,000 sentence-sentence pairs, making 

it one of the most extensive collections in terms of both 

sentences and words.

3) ActivityNet Captions

ActivityNet Captions [49] is used for video under-

standing and subtitle generation tasks. The dataset con-

sists of 20,000 untrimmed YouTube videos with an aver-

age length of 120 seconds. Each video is accompanied by 

three or more manually produced sentence captions, 

averaging 13.5 words per video. 

4) Charades

Charades dataset [50] offers 9,849 daily indoor activity 

videos with an average length of 30 seconds. It includes 

interactions between 46 object categories in 25 indoor 

scenes, as well as 157 action categories composed of 30 

verbs. 

5) VATEX

VATEX [51] is a large-scale multilingual and multimodal 

dataset that includes 41,250 videos and 825,000 English- 

Chinese caption pairs. The dataset provides videos and 

corresponding textual descriptions, encompassing over 

206,000 translation pairs. 

6) LSMDC: Large Scale Movie Description Challenge

LSMDC [52] provides a large-scale dataset consisting of 

118,081 segments extracted from 202 movies. The seg-

ment captions are derived from scripts or descriptive vid-

eo services for people with visual impairments. 

7) YouCook2

YouCook2 [53] is a large cooking video dataset from 

YouTube, featuring 2,000 unedited third-person perspec-

tive videos. Covering 89 global recipes, it offers about 22 

videos per recipe.

8) MPII-MD 

 MPII-MD [54] dataset contains about 68,000 video seg-

ments from 94 Hollywood movies, each with a brief sin-

gle-sentence description sourced from scripts, audio de-

scriptions, or descriptive video service (DVS).

9) M-VAD: Montreal Video Annotation Dataset

M-VAD [55] is a dataset composed of over 24,000 video 

segments obtained via a semi-automatic method. It in-

cludes 63,000 annotations (face bounding boxes) related 

to character appearances, as well as 34,000 text annota-

tions associated with them.

3.2 Evaluation Metrics for Video Captioning

In this section, we will provide a detailed explanation 

and introduction of commonly used evaluation metrics. 

These metrics serve as widely accepted tools for assessing 

the quality of generated video captions. Their purpose is 

to quantitatively measure the similarity and accuracy be-

tween automatically generated captions and human refer-

ence captions, enabling an objective assessment of model 

performance.

1) BLEU: Bilingual Evaluation Understudy

BLEU [56] is a measurement standard used to automati-

cally evaluate machine translation quality. It measures the 

degree of agreement between candidate translations 

(machine translation results) and reference translations 

(human translation results). The key idea is based on 

n-gram (contiguous n words) accuracy. The final BLEU 

score is calculated by obtaining weighted averages of the 

number of matching n-grams between candidate transla-

tions and reference translations. When calculating n-gram 

accuracy, BLEU also considers the modified n-gram accu-

racy to address the issue of weighted averaging of n- 

grams of different lengths. To account for translation 

length, BLEU introduced a penalty factor for short sen-

tences. The BLEU score applies a penalty to longer candi-

date translations compared to reference translations, ad-

dressing length discrepancies. It uses weighted averages 

for the significance of different-length n-grams in evalu-

ation. The weights or importance factors are calculated as 

the geometric mean of the logarithms of n-gram accu-

racies, reflecting the relative importance of n-grams of 

different lengths in the evaluation. Finally, BLEU calcu-

lates the score as a geometric mean of the weighted aver-

age of n-gram accuracy and the penalty factor for short 
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sentences, resulting in a score between 0 and 1. A higher 

score indicates better machine translation quality. The 

formula is as follows:

 · exp  ∑
 




log        (1)

Here, BP (Brevity Penalty) is a penalty factor that ad-

justs the length difference between candidate translations 

and reference translations.  is a weight coefficient used 

to calculate the weighted average of n-gram accuracy.  

represents n-gram accuracy, which indicates the ratio of 

correctly matching n-grams in candidate translations to 

the total number of n-grams in candidate translations.

When calculating accuracy, considering modified n- 

gram accuracy, it takes the logarithm of n-gram accuracy 

values and calculates the weighted average. This reflects 

the relative importance of n-grams of different lengths in 

the evaluation. The penalty factor BP adjusts the length of 

candidate translations to ensure that candidate trans-

lations match reference translations in terms of length. 

The calculation of BP is as follows:

  if   
exp if ≤ 

             (2)

Among them, r represents the length of the candidate 

translation, and c represents the length of the reference 

translation that is closest to r. By utilizing the afore-

mentioned formula, we can obtain a BLEU score ranging 

from 0 to 1, with a higher score indicating superior trans-

lation quality by the machine.

2) METEOR: Metric for Evaluation of Translation with 

Explicit ORdering

METEOR [57] is an improvement upon BLEU, aiming to 

address inherent deficiencies in the BLEU standards. 

METEOR employs word matching based on surface forms, 

stem forms, and semantics. The METEOR scoring involves 

Fmean and Penalty.

Fmean is used to comprehensively evaluate the word 

precision and recall in the METEOR metric, measuring the 

accuracy and coverage of translations by calculating their 

harmonic mean. The formula for calculating Fmean is as 

follows:



 precisio

precisiorecall
       (3)

METEOR considers the case of longer matches by seg-

menting the matching words in the system translation into 

chunks, then calculating a penalty term based on the 

number of chunks and the number of matched chunks. 

The formula is as follows:

  

 


            (4)

Here,  is a penalty factor used to balance the strength 

of the penalty term. 



 represents the num-

ber of words matched in the system translation that are 

divided into chunks. β is an exponential parameter that 

determines the relationship between the number of 

matching chunks and word matches. Finally, the calcu-

lation formula for METEOR is as follows:

           (5)

3) CIDEr: Consensus-based Image Description Evalu-

ation 

CIDEr [58] is an evaluation metric commonly utilized 

for image captioning tasks to assess the similarity between 

generated and reference sentences. This metric primarily 

operates by calculating the Term Frequency-Inverse 

Document Frequency (TF-IDF) vectors for the n-grams 

present in each sentence. The formula used for TF-IDF 

calculation is as follows:




∑

∈Ω




log∑

∈
min∑




 (6)

Here,  represents the set of all n-grams,  de-

notes the count of phrase  appearing in the reference 

sentence , ∣∣ is the total number of images in the 

dataset, and cosine similarity is employed to measure the 

semantic consistency between candidate and reference 

sentences. The following formula is used for this calcu-

lation:





∑


‖‖‖‖

∙
         (7)

Here,  represents the candidate sentence,  is the set 

of reference sentences, m is the number of reference sen-
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tences, n is the length of n-gram,   and  rep-

resent the TF-IDF vectors of the candidate and reference 

sentences.

4) ROUGE: Recall-Oriented Understudy for Gisting 

Evaluation)

ROUGE [59] is a metric for automatically evaluating 

summary quality. ROUGE [59] is a metric for automatically 

evaluating summary quality. Its function is to quantify the 

quality of summaries by comparing the overlap between 

machine-generated summaries and reference summaries. 

ROUGE includes multiple different measurement methods, 

such as ROUGE-N, ROUGE-L, etc., which can be used to 

evaluate the matching of summaries at different levels. 

The "N" in ROUGE-N refers to N-gram. The calculation 

method of ROUGE-N is similar to BLEU, but it focuses on 

calculating the recall of N-grams. For N-gram, the 

ROUGE-N score can be calculated. The formula is as fol-

lows:



∑
∈ 

∈



∑
∈ 

∈


   (8)

Here,  represents the length of n-gram, repre-

sents n-gram unit. The numerator quantifies the N-grams 

shared between the reference translation and the machine 

translation, while the denominator calculates the total 

count of N-grams in the reference translation.

ROUGE-L primarily focuses on Longest Common Sub-

sequence (LCS), where L stands for Longest. ROUGE-L 

measures the structural and sequential similarity between 

generated translation C and reference translation S. The 

calculation formula is as follows:





lenS


                (9)





lenC


               (10)










β




β






            (11) 

Here, 


 represents the recall rate, 


 represents 

the precision rate,  represents the balance parameter 

that trades off recall and precision.

4. Future Works and Challenges

In the field of video captioning, significant progress has 

been made, but there are still various challenges that must 

be addressed and overcome. These challenges are crucial 

for generating captions that maintain temporal consis-

tency and accurately capture dynamic scenes, which are 

essential for ensuring the quality and accuracy of captions.

Firstly, ensuring temporal consistency presents one of 

the primary challenges in generating video captions. 

Videos encompass various scenes, actions, and dialogue 

changes in a dynamic multimedia format.  In this scenar-

io, generating captions that are consistent with the video 

context and maintain temporal consistency is a complex 

task. To address the challenge of temporal consistency, 

multiple factors need to be considered. One approach is 

to ensure that the generated captions align with the video 

context. To maintain both language expression and tem-

poral consistency with dynamic changes in the video, an-

alyzing the video to recognize key scenes and action tran-

sition points and inserting or updating captions at appro-

priate times may be necessary. Another approach is to use 

attention mechanisms to handle temporal consistency. 

Attention mechanisms dynamically weigh frames at differ-

ent time steps during the decoding process to maintain 

the temporal sequence of the generated captions with re-

spect to the video content. Attention mechanism dynam-

ically weights the frames at different time steps during the 

decoding process to maintain the temporal order of the 

generated captions relative to the video content. By con-

sidering the relevance of video frames, the model can 

make more accurate decisions on when to generate or 

update captions, thereby enhancing overall caption-to- 

video consistency.

Secondly, accurately capturing dynamic scenes in cap-

tion generation is also a complex problem involving vari-

ous complexities. When processing videos where multiple 

individuals, objects, and backgrounds interact, a caption 

generation system needs to have a high level of ob-

servation to accurately and meticulously capture each dy-

namic element and express them clearly and vividly in 

language. In such situations, merely understanding the lit-

eral meaning is insufficient. Deeply interpreting visual in-

formation is required to grasp the emotions, actions, and 

intentions inherent in interactions. Dynamic scenes may 

require specific identification and descriptions in cap-

tions, allowing the audience to understand complex sit-

uations accurately.
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In order to address these challenges, researchers con-

tinuously explore innovative technical paths. The rapid 

development of deep learning has provided powerful tools 

for enhancing caption generation techniques. Specifically, 

we categorize them as:

1) Precisely model the visual content of the video and 

its temporal relationships. Enhance the recognition and 

understanding of objects, actions, and scenes within the 

video, and create more sophisticated models for the rela-

tionships between objects in the time series.

2) Integrate visual information with data from other 

modalities (e.g. audio, text). Perform information fusion 

across modalities, align and analyze multimodal data, and 

leverage the complementarity of multimodal data to en-

hance the quality and effectiveness of video analysis.

3) Perform context modeling. Video is a unique multi-

media form, composed of multiple continuous images ar-

ranged in chronological order. Therefore, it is imperative 

to delve into enhancing the modeling of contextual in-

formation within the video to ensure improved coherence 

and consistency of video descriptions.

4) Perform long-range dependency modeling. In some 

videos, events unfold over an extended period, requiring 

the modeling of long-range dependencies to generate ac-

curate descriptions. Traditional RNN structures may be 

limited in modeling long-range dependencies, so re-

searchers can explore more effective architectures.

5) Consider datasets and evaluation metrics. To com-

prehensively assess the quality and temporal consistency 

of generated captions, it is crucial to construct richer 

multimodal datasets and design more accurate evaluation 

metrics.

In future research, it is important to consider the inter-

play between objects and actions during the encoding 

stage. Video frames that feature multiple objects exhibit 

behaviors and actions that are intricately linked to the 

corresponding video captions. Moreover, the inseparable 

relationship between audio and events in videos enables 

the possibility of event analysis through audio for video 

processing. Therefore, exploring the incorporation of 

multimodal techniques in video caption generation repre-

sents a crucial avenue for future research.

5. Conclusion

This paper provides a comprehensive overview of four 

types of video captioning models: CNN-RNN, RNN-RNN, 

multimodal, and Transformer models. It emphasizes their 

unique advantages and applications. Additionally, this pa-

per introduces well-known video caption datasets and ex-

plains key evaluation metrics for video captions to facili-

tate an objective understanding of video caption model 

performance evaluation.

Furthermore, the paper engages in an in-depth dis-

cussion of several challenges faced by the video caption-

ing field. Maintaining temporal consistency is a critical 

challenge, considering that videos consist of a continuous 

series of frames, and ensuring the seamless generation of 

captions requires the consideration of continuous context 

information transfer and processing. Additionally, accu-

rately capturing dynamic scenes is another challenging 

task. Videos contain various movements, object inter-

actions, and scene changes, and models need to precisely 

recognize and describe these dynamic changes to generate 

accurate captions.

The paper also proposes future research directions 

and challenges in video captioning. Firstly, improving 

the ability to model video content and temporal relation-

ships to better understand the meaning and emotional 

changes in videos. Secondly, the integration of visual in-

formation with other mode data (e.g., sound and text) 

offers opportunities to enhance the accuracy and diver-

sity of caption generation. Moreover, the paper provides 

more detailed mentions of research directions and chal-

lenges in video captioning to offer researchers more 

specific guidelines.
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