• 제목/요약/키워드: constant mean curvature hypersurface

검색결과 15건 처리시간 0.02초

ON H2-PROPER TIMELIKE HYPERSURFACES IN LORENTZ 4-SPACE FORMS

  • Firooz Pashaie
    • 대한수학회논문집
    • /
    • 제39권3호
    • /
    • pp.739-756
    • /
    • 2024
  • The ordinary mean curvature vector field 𝗛 on a submanifold M of a space form is said to be proper if it satisfies equality Δ𝗛 = a𝗛 for a constant real number a. It is proven that every hypersurface of an Riemannian space form with proper mean curvature vector field has constant mean curvature. In this manuscript, we study the Lorentzian hypersurfaces with proper second mean curvature vector field of four dimensional Lorentzian space forms. We show that the scalar curvature of such a hypersurface has to be constant. In addition, as a classification result, we show that each Lorentzian hypersurface of a Lorentzian 4-space form with proper second mean curvature vector field is C-biharmonic, C-1-type or C-null-2-type. Also, we prove that every 𝗛2-proper Lorentzian hypersurface with constant ordinary mean curvature in a Lorentz 4-space form is 1-minimal.

FUNDAMENTAL TONE OF COMPLETE WEAKLY STABLE CONSTANT MEAN CURVATURE HYPERSURFACES IN HYPERBOLIC SPACE

  • Min, Sung-Hong
    • 충청수학회지
    • /
    • 제34권4호
    • /
    • pp.369-378
    • /
    • 2021
  • In this paper, we give an upper bound for the fundamental tone of stable constant mean curvature hypersurfaces in hyperbolic space. Let M be an n-dimensional complete non-compact constant mean curvature hypersurface with finite L2-norm of the traceless second fundamental form. If M is weakly stable, then λ1(M) is bounded above by n2 + O(n2+s) for arbitrary s > 0.

ON A SEMI-INVARIANT SUBMANIFOLD OF CODIMENSION 3 WITH CONSTANT MEAN CURVATURE IN A COMPLEX PROJECTIVE SPACE

  • Lee, Seong-Baek
    • 대한수학회논문집
    • /
    • 제18권1호
    • /
    • pp.75-85
    • /
    • 2003
  • Let M be 3 Semi-invariant submanifold of codimension 3 with lift-flat normal connection in a complex projective space. Further, if the mean curvature of M is constant, then we prove that M is a real hypersurface of a complex projective space of codimension 2 in the ambient space.

REAL HYPERSURFACES WITH ξ-PARALLEL RICCI TENSOR IN A COMPLEX SPACE FORM

  • Ahn, Seong-Soo;Han, Seung-Gook;Kim, Nam-Gil;Lee, Seong-Baek
    • 대한수학회논문집
    • /
    • 제13권4호
    • /
    • pp.825-838
    • /
    • 1998
  • We prove that if a real hypersurface with constant mean curvature of a complex space form satisfying ▽$_{ξ/}$S = 0 and Sξ = $\sigma$ξ for a smooth function $\sigma$, then the structure vector field ξ is principal, where S denotes the Ricci tensor of the hypersurface.

  • PDF

Structure Jacobi Operators of Real Hypersurfaces with Constant Mean Curvature in a Complex Space Form

  • Hwang, Tae Yong;Ki, U-Hang;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • 제56권4호
    • /
    • pp.1207-1235
    • /
    • 2016
  • Let M be a real hypersurface with constant mean curvature in a complex space form $M_n(c),c{\neq}0$. In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ with respect to the structure vector field ${\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor field ${\phi}$, then M is a homogeneous real hypersurface of Type A.

DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • 대한수학회지
    • /
    • 제53권4호
    • /
    • pp.737-767
    • /
    • 2016
  • This paper concerns closed hypersurfaces of dimension $n{\geq}2$ in the hyperbolic space ${\mathbb{H}}_{\kappa}^{n+1}$ of constant sectional curvature evolving in direction of its normal vector, where the speed equals a power ${\beta}{\geq}1$ of the mean curvature. The main result is that if the initial closed, weakly h-convex hypersurface satisfies that the ratio of the biggest and smallest principal curvature at everywhere is close enough to 1, depending only on n and ${\beta}$, then under the flow this is maintained, there exists a unique, smooth solution of the flow which converges to a single point in ${\mathbb{H}}_{\kappa}^{n+1}$ in a maximal finite time, and when rescaling appropriately, the evolving hypersurfaces exponential convergence to a unit geodesic sphere of ${\mathbb{H}}_{\kappa}^{n+1}$.