Structure Jacobi Operators of Real Hypersurfaces with Constant Mean Curvature in a Complex Space Form

Tae Yong Hwang
Department of Mathematics Chosun University, Gwangju 61452, Korea
e-mail: hhhpppl995@naver.com
U-Hang Ki
The National Academy of Siences, Seoul 06579, Korea
e-mail: uhangki2005@naver.com
Hiroyuki Kurihara*
The College of Education, Ibaraki University, Mito 310-8512, Japan
e-mail: hiroyuki.kurihara.math@vc.ibaraki.ac.jp

Abstract. Let M be a real hypersurface with constant mean curvature in a complex space form $M_{n}(c), c \neq 0$. In this paper, we prove that if the structure Jacobi operator $R_{\xi}=R(\cdot, \xi) \xi$ with respect to the structure vector field ξ is $\phi \nabla_{\xi} \xi$-parallel and R_{ξ} commute with the structure tensor field ϕ, then M is a homogeneous real hypersurface of Type A.

1. Introduction

Let $M_{n}(c)$ be an n-dimensional complex space form with constant holomorphic sectional curvature $4 c \neq 0$, and let J be its complex structure. Complete and simply connected complex space forms are isometric to a complex projective space $P_{n} \mathbb{C}$ or a complex hyperbolic space $H_{n} \mathbb{C}$ for $c>0$ or $c<0$, respectively.

Let M be a conected submanifold of $M_{n}(c)$ with real codimension 1. We refer to this simply as a real hypersurface below.

For a local unit normal vector field N of M, we define the structure vector field ξ of M by $\xi=-J N$. The structure vector ξ is said to be principal if $A \xi=\alpha \xi$ is satisfied for some functuion α, where A is the shape operator of M.

A real hypersurface M is said to be a Hopf hypersurface if the structure vector ξ of M is principal.

* Corresponding Author.

Received February 8, 2016; accepted July 11, 2016.
2010 Mathematics Subject Classification: 53B20, 53C15, 53C25.
Key words and phrases: complex space form, real hypersurface, structure Jacobi operator, mean curvature.

Hopf hypersurfaces is realized as tubes over certain submanifolds in $P_{n} \mathbb{C}$, by using its focal map (see Cecil and Ryan [2]). By making use of those results and the mentioned work of Takagi ([15], [16]), Kimura [11] proved the local classification theorem for Hopf hypersurfaces of $P_{n} \mathbb{C}$ whose all principal curvatures are constant. For the case $H_{n} \mathbb{C}$, Berndt [1] proved the classification theorem for Hopf hypersurfaces whose all principal curvatures are constant. Among the several types of real hypersurfaces appeared in Takagi's list or Berndt's list, a particular type of tubes over totally geodesic $P_{k} \mathbb{C}$ or $H_{k} \mathbb{C}(0 \leq k \leq n-1)$ adding a horosphere in $H_{n} \mathbb{C}$, which is called type A, has a lot of nice geometric properties.

The structure vector field ξ plays an important role in the theory of real hypersurfaces in a complex space form $M_{n}(c)$. Related to the structure vector field ξ the Jacobi operator R_{ξ} defined by $R_{\xi}=R(\cdot, \xi) \xi$ for the curvature tensor R on a real hypersurface M in $M_{n}(c)$ is said to be a structure Jacobi operator on M. The structure Jacobi operator has a fundamental role in contact geometry. In [3], Cho and second author started the study on real hypersurfaces in complex space form by using the operator R_{ξ}. In particular the structure Jacobi operator has been studied under the various commutative condition ([3], [7], [10], [14]). For example, Pérez et al. [14] called that real hypersurfaces M has commuting structure Jacobi operator if $R_{\xi} R_{X}=R_{X} R_{\xi}$ for any vector field X on M, and proved that there exist no real hypersurfaces in $M_{n}(c)$ with commuting structure Jacobi operator. On the other hand Ortega et al. [12] have proved that there are no real hypersurfaces in $M_{n}(c)$ with parallel structure Jacobi operator R_{ξ}, that is, $\nabla_{X} R_{\xi}=0$ for any vector field X on M. More generally, such a result has been extended by [13]. In this situation, if naturally leads us to be consider another condition weaker than parallelness. In the preceding work, we investigate the weaker condition ξ-parallelness, that is, $\nabla_{\xi} R_{\xi}=0$ (cf. [4], [8], [9]). Moreover some works have studied several conditions on the structure Jacobi operator R_{ξ} and given some results on the classification of real hypersurfaces of Type A in complex space form ([3], [5], [8] and [9]). The following facts are used in this paper without proof.

Theorem 1.1.([5]) Let M be a real hypersurface in a nonflat complex space form $M_{n}(c), c \neq 0$ which satisfies $R_{\xi}(A \phi-\phi A)=0$. Then M is a Hopf hypersurface in $M_{n}(c)$. Further, M is locally congruent to one of the following hypersurfaces:
(I) In cases that $M_{n}(c)=P_{n} \mathbb{C}$ with $\eta(A \xi) \neq 0$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / 2$ and $r \neq \pi / 4$;
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $P_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$, where $0<r<\pi / 2$ and $r \neq \pi / 4$.
(II) In cases $M_{n}(c)=H_{n} \mathbb{C}$,
$\left(A_{0}\right)$ a horosphere;
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1} \mathbb{C}$;
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$.

In continuing work [10] Nagai, Takagi and the first author proved the following:
Theorem 1.2.(Ki, Nagai and Takagi [10]) Let M be a real hypersurface in a nonflat complex space form $M_{n}(c), c \neq 0$ If M satisfies $R_{\xi} \phi=\phi R_{\xi}$ and at the same time $R_{\xi} S=S R_{\xi}$. Then M is the same types as those in Theorem 1.1, where S denotes the Ricci tensor of M.

In [7], the authors started the study on real hypersurfaces in a complex space form with $\phi \nabla_{\xi} \xi$-parallel structure Jacobi operator R_{ξ}, that is, $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$ for the vector $\phi \nabla_{\xi} \xi$ orthogonal to ξ. In previous paper [6], Kim and two of present authors prove that if the structure Jacobi operator R_{ξ} is $\phi \nabla_{\xi} \xi$-parallel and R_{ξ} commute with the structure tensor ϕ, then M is homogeneous real hypersurfaces of Type A provided that $\operatorname{Tr} R_{\xi}$ is constant. The main purpose of the present paper is to prove that if the structure Jacobi operator is $\phi \nabla_{\xi} \xi$-parallel and R_{ξ} commute with the structure tensor field ϕ, then the real hypersurfaces M with constant mean curvature is homogeneous real hypersurfaces of Type A.

All manifolds in this paper are assumed to be connected and of class C^{∞} and the real hypersurfaces are supposed to be oriented.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form $M_{n}(c), c \neq 0$ with almost complex structure J, and N be a unit normal vector field on M. The Riemannian connection $\tilde{\nabla}$ in $M_{n}(c)$ and ∇ in M are related by the following formulas for any vector fields X and Y on M :

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) N, \quad \tilde{\nabla}_{X} N=-A X
$$

where g denotes the Riemannian metric of M induced from that of $M_{n}(c)$ and A denotes the shape operator of M in direction N. For any vector field X tangent to M, we put

$$
J X=\phi X+\eta(X) N, \quad J N=-\xi
$$

We call ξ the structure vector field (or the Reeb vector field) and its flow also denoted by the same latter ξ. The Reeb vector field ξ is said to be principal if $A \xi=\alpha \xi$, where $\alpha=\eta(A \xi)$.

A real hypersurface M is said to be a Hopf hypersurface if the Reeb vector field ξ is principal. It is known that the aggregate (ϕ, ξ, η, g) is an almost contact metric structure on M, that is, we have

$$
\begin{aligned}
& \phi^{2} X=-X+\eta(X) \xi, g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \\
& \eta(\xi)=1, \phi \xi=0, \eta(X)=g(X, \xi)
\end{aligned}
$$

for any vector fields X and Y on M. From Kähler condition $\tilde{\nabla} J=0$, and taking account of above equations, we see that

$$
\begin{align*}
& \nabla_{X} \xi=\phi A X \tag{2.1}\\
& \left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{2.2}
\end{align*}
$$

for any vector fields X and Y tangent to M.
Since we consider that the ambient space is of constant holomorphic sectional curvature $4 c$, equations of the Gauss and Codazzi are respectively given by

$$
\begin{align*}
R(X, Y) Z= & c\{g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \tag{2.3}\\
& -2 g(\phi X, Y) \phi Z\}+g(A Y, Z) A X-g(A X, Z) A Y, \\
\left(\nabla_{X} A\right) Y- & \left(\nabla_{Y} A\right) X=c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \tag{2.4}
\end{align*}
$$

for any vector fields X, Y and Z on M, where R denotes the Riemannian curvature tensor of M.

In what follows, to write our formulas in convention forms, we denote by $\alpha=$ $\eta(A \xi), \beta=\eta\left(A^{2} \xi\right)$ and $h=\operatorname{Tr} A$, and for a function f we denote by ∇f the gradient vector field of f.

From the Gauss equation (2.3), the Ricci tensor S of M is given by

$$
\begin{equation*}
S X=c\{(2 n+1) X-3 \eta(X) \xi\}+h A X-A^{2} X \tag{2.5}
\end{equation*}
$$

for any vector field X on M.
Now, we put

$$
\begin{equation*}
A \xi=\alpha \xi+\mu W \tag{2.6}
\end{equation*}
$$

where W is a unit vector field orthogonal to ξ. In the sequel, we put $U=\nabla_{\xi} \xi$, then by (2.1) we see that

$$
\begin{equation*}
U=\mu \phi W \tag{2.7}
\end{equation*}
$$

and hence U is orthogonal to W. So we have $g(U, U)=\mu^{2}$. Using (2.7), it is clear that

$$
\begin{equation*}
\phi U=-A \xi+\alpha \xi \tag{2.8}
\end{equation*}
$$

which shows that $g(U, U)=\beta-\alpha^{2}$. Thus it is seen that

$$
\begin{equation*}
\mu^{2}=\beta-\alpha^{2} . \tag{2.9}
\end{equation*}
$$

Making use of (2.1), (2.7) and (2.8), it is verified that

$$
\begin{gather*}
\mu g\left(\nabla_{X} W, \xi\right)=g(A U, X), \tag{2.10}\\
g\left(\nabla_{X} \xi, U\right)=\mu g(A W, X) \tag{2.11}
\end{gather*}
$$

because W is orthogonal to ξ.
Now, differentiating (2.8) covariantly and taking account of (2.1) and (2.2), we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) \xi=-\phi \nabla_{X} U+g(A U+\nabla \alpha, X) \xi-A \phi A X+\alpha \phi A X \tag{2.12}
\end{equation*}
$$

which together with (2.4) implies that

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) \xi=2 A U+\nabla \alpha \tag{2.13}
\end{equation*}
$$

Applying (2.12) by ϕ and making use of (2.11), we obtain

$$
\begin{equation*}
\phi\left(\nabla_{X} A\right) \xi=\nabla_{X} U+\mu g(A W, X) \xi-\phi A \phi A X-\alpha A X+\alpha g(A \xi, X) \xi \tag{2.14}
\end{equation*}
$$

which connected to (2.1), (2.9) and (2.13) gives

$$
\begin{equation*}
\nabla_{\xi} U=3 \phi A U+\alpha A \xi-\beta \xi+\phi \nabla \alpha \tag{2.15}
\end{equation*}
$$

Using (2.3), the structure Jacobi operator R_{ξ} is given by

$$
\begin{equation*}
R_{\xi}(X)=R(X, \xi) \xi=c\{X-\eta(X) \xi\}+\alpha A X-\eta(A X) A \xi \tag{2.16}
\end{equation*}
$$

for any vector field X on M. Differentiating this covariantly along M, we find

$$
\begin{align*}
g\left(\left(\nabla_{X} R_{\xi}\right) Y, Z\right)= & g\left(\nabla_{X}\left(R_{\xi} Y\right)-R_{\xi}\left(\nabla_{X} Y\right), Z\right) \\
= & -c\left(\eta(Z) g\left(\nabla_{X} \xi, Y\right)+\eta(Y) g\left(\nabla_{X} \xi, Z\right)\right) \\
& +(X \alpha) g(A Y, Z)+\alpha g\left(\left(\nabla_{X} A\right) Y, Z\right) \tag{2.17}\\
& -\eta(A Z)\left\{g\left(\left(\nabla_{X} A\right) \xi, Y\right)+g(A \phi A X, Y)\right\} \\
& -\eta(A Y)\left\{g\left(\left(\nabla_{X} A\right) \xi, Z\right)+g(A \phi A X, Z)\right\} .
\end{align*}
$$

From (2.5) and (2.16), we have

$$
\begin{align*}
\left(R_{\xi} S-S R_{\xi}\right)(X)= & -\eta(A X) A^{3} \xi+\eta\left(A^{3} X\right) A \xi-\eta\left(A^{2} X\right)(h A \xi-c \xi) \tag{2.18}\\
& +(h \eta(A X)-c \eta(X)) A^{2} \xi-\operatorname{ch}\{\eta(A X) \xi-\eta(X) A \xi\}
\end{align*}
$$

Let Ω be the open subset of M defined by

$$
\Omega=\{p \in M ; A \xi-\alpha \xi \neq 0\}
$$

At each point of Ω, the Reeb vector field ξ is not principal. That is, ξ is not an eigenvector of the shape operator A of M if $\Omega \neq \emptyset$.

In what follows we assume that Ω is not an empty set in order to prove our main theorem by reductio ad absurdum, unless otherwise stated, all discussion concerns the set Ω.

3. Real Hypersurfaces Satisfying $R_{\xi} \phi=\phi R_{\xi}$

Let M be a real hypersurface in $M_{n}(c), c \neq 0$. We suppose that $R_{\xi} \phi=\phi R_{\xi}$, which means that the eigenspace R_{ξ} is invariant by the structure tensor ϕ. Then by using (2.16) we have

$$
\begin{equation*}
\alpha(\phi A X-A \phi X)=g(A \xi, X) U+g(U, X) A \xi \tag{3.1}
\end{equation*}
$$

Using (3.1), it is clear that $\alpha \neq 0$ on Ω. So a function λ given by $\beta=\alpha \lambda$ is defined. Because of (2.9), we have

$$
\begin{equation*}
\mu^{2}=\alpha \lambda-\alpha^{2} \tag{3.2}
\end{equation*}
$$

Replacing X by U in (3.1) and taking account of (2.8), we find

$$
\begin{equation*}
\phi A U=\lambda A \xi-A^{2} \xi \tag{3.3}
\end{equation*}
$$

which enable us to obtain

$$
\begin{equation*}
\phi A^{2} \xi=A U+\lambda U \tag{3.4}
\end{equation*}
$$

because U is orthogonal to $A \xi$. From this and (2.6) we have

$$
\begin{equation*}
\mu \phi A W=A U+(\lambda-\alpha) U \tag{3.5}
\end{equation*}
$$

which together with (2.7) yields

$$
\begin{equation*}
g(A W, U)=0 \tag{3.6}
\end{equation*}
$$

Using (2.6) and (3.3), we can write (2.15) as

$$
\begin{equation*}
\nabla_{\xi} U=(3 \lambda-2 \alpha) A \xi-3 \mu A W-\alpha \lambda \xi+\phi \nabla \alpha \tag{3.7}
\end{equation*}
$$

Since $\alpha \neq 0$ on Ω, (3.1) reformed as

$$
\begin{equation*}
(\phi A-A \phi) X=\eta(X) U+u(X) \xi+\tau(u(X) W+w(X) U) \tag{3.8}
\end{equation*}
$$

where a 1-form u is defined by $u(X)=g(U, X)$ and w by $w(X)=g(W, X)$, where we put

$$
\begin{equation*}
\alpha \tau=\mu, \lambda-\alpha=\mu \tau \tag{3.9}
\end{equation*}
$$

Differentiating (3.8) covariantly and taking the inner product with any vector field Z, we find

$$
\begin{align*}
& g\left(\phi\left(\nabla_{Y} A\right) X, Z\right)+g\left(\phi\left(\nabla_{Y} A\right) Z, X\right) \\
& =-\eta(A X) g(A Y, Z)-g(A X, Y) \eta(A Z) \\
& \quad+g\left(A^{2} X, Y\right) \eta(Z)+\eta(X) g\left(A^{2} Y, Z\right) \\
& \quad+(\eta(X)+\tau w(X)) g\left(\nabla_{Y} U, Z\right) \\
& \quad+g\left(\nabla_{Y} U, X\right)(\eta(Z)+\tau w(Z)) \tag{3.10}\\
& \quad+u(X) g\left(\nabla_{Y} \xi, Z\right)+g\left(\nabla_{Y} \xi, X\right) u(Z) \\
& \quad+(Y \tau)(u(X) w(Z)+u(Z) w(X)) \\
& \quad+\tau\left(u(X) g\left(\nabla_{Y} W, Z\right)+g\left(\nabla_{Y} W, X\right) u(Z)\right)
\end{align*}
$$

because of (2.1) and (2.2). From this, taking the skew-symmetric part with respect to X and Y, and making use of the Codazzi equation (2.4), we find

$$
\begin{aligned}
& c(\eta(X) g(Y, Z)-\eta(Y) g(X, Z)) \\
& +g\left(\left(\nabla_{X} A\right) \phi Y, Z\right)-g\left(\left(\nabla_{Y} A\right) \phi X, Z\right) \\
& =-\eta(A X) g(A Y, Z)+\eta(A Y) g(A X, Z) \\
& \quad+\eta(X) g\left(A^{2} Y, Z\right)-\eta(Y) g\left(A^{2} X, Z\right) \\
& \quad+(\eta(X)+\tau w(X)) g\left(\nabla_{Y} U, Z\right)-(\eta(Y)+\tau w(Y)) g\left(\nabla_{X} U, Z\right) \\
& \quad+\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)(\eta(Z)+\tau w(Z)) \\
& \quad+u(X) g\left(\nabla_{Y} \xi, Z\right)-u(Y) g\left(\nabla_{X} \xi, Z\right) \\
& \quad+\left(g\left(\nabla_{Y} \xi, X\right)-g\left(\nabla_{X} \xi, Y\right)\right) u(Z) \\
& \quad+(Y \tau)(u(X) w(Z)+u(Z) w(X))-(X \tau)(u(Y) w(Z)+u(Z) w(Y)) \\
& \quad+\tau\left\{u(X) g\left(\nabla_{Y} W, Z\right)-u(Y) g\left(\nabla_{X} W, Z\right)\right\} \\
& \quad+\tau\left\{\left(g\left(\nabla_{Y} W, X\right)-g\left(\nabla_{X} W, Y\right)\right) u(Z)\right\} .
\end{aligned}
$$

Interchanging Y and Z in (3.10), we obtain

$$
\begin{aligned}
& g\left(\phi\left(\nabla_{Z} A\right) X, Y\right)+g\left(\phi\left(\nabla_{Z} A\right) Y, X\right) \\
& =-\eta(A X) g(A Y, Z)-g(A X, Z) \eta(A Y) \\
& \quad+g\left(A^{2} X, Z\right) \eta(Y)+\eta(X) g\left(A^{2} Y, Z\right) \\
& \quad+(\eta(X)+\tau w(X)) g\left(\nabla_{Z} U, Y\right)+g\left(\nabla_{Z} U, X\right)(\eta(Y)+\tau w(Y)) \\
& \quad+u(X) g\left(\nabla_{Z} \xi, Y\right)+g\left(\nabla_{Z} \xi, X\right) u(Y) \\
& \quad+(Z \tau)(u(X) w(Y)+u(Y) w(X)) \\
& \quad+\tau\left(u(X) g\left(\nabla_{Z} W, Y\right)+g\left(\nabla_{Z} W, X\right) u(Y)\right),
\end{aligned}
$$

which connected to (2.4) and (3.11)

$$
\begin{align*}
& 2 g\left(\left(\nabla_{Y} A\right) \phi X, Z\right)+2 c(\eta(Z) g(X, Y)-\eta(X) g(Y, Z)) \\
& +2 \eta(X) g\left(A^{2} Z, Y\right)-2 \eta(A X) g(A Z, Y) \\
& +\left(g\left(\nabla_{Z} U, X\right)-g\left(\nabla_{X} U, Z\right)\right)(\eta(Y)+\tau w(Y)) \\
& +\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)(\eta(Z)+\tau w(Z)) \\
& +\left(g\left(\nabla_{Z} U, Y\right)+g\left(\nabla_{Y} U, Z\right)\right)(\eta(X)+\tau w(X)) \\
& +\left(g\left(\nabla_{Z} \xi, X\right)-g\left(\nabla_{X} \xi, Z\right)\right) u(Y)+\left(g\left(\nabla_{Y} \xi, X\right)-g\left(\nabla_{X} \xi, Y\right)\right) u(Z) \tag{3.12}\\
& +\left(g\left(\nabla_{Z} \xi, Y\right)+g\left(\nabla_{Y} \xi, Z\right)\right) u(X)+(Y \tau)(u(X) w(Z)+u(Z) w(X)) \\
& +(Z \tau)(u(X) w(Y)+u(Y) w(X))-(X \tau)(u(Y) w(Z)+u(Z) w(Y)) \\
& +\tau\left\{u(X)\left(g\left(\nabla_{Z} W, Y\right)+g\left(\nabla_{Y} W, Z\right)\right)\right. \\
& +u(Z)\left(g\left(\nabla_{X} W, Y\right)-g\left(\nabla_{Y} W, X\right)\right) \\
& \left.+u(Y)\left(g\left(\nabla_{Z} W, X\right)-g\left(\nabla_{X} W, Z\right)\right)\right\}=0 .
\end{align*}
$$

If we put $X=\xi$ in (3.12), then we have

$$
\begin{align*}
& g\left(\nabla_{Y} U, Z\right)+g\left(\nabla_{Z} U, Y\right)+2 c(\eta(Z) \eta(Y)-g(Z, Y)) \\
& +2 g\left(A^{2} Y, Z\right)-2 \alpha g(A Y, Z)-d u(\xi, Z)(\eta(Y)+\tau w(Y)) \\
& -d u(\xi, Y)(\eta(Z)+\tau w(Z))-2 u(Y) u(Z) \tag{3.13}\\
& -(\xi \tau)(u(Y) w(Z)+u(Z) w(Y)) \\
& -\tau\{u(Z) d w(\xi, Y)+u(Y) d w(\xi, Z)\}=0
\end{align*}
$$

where d denotes the operator of the exterior derivative.

4. Real Hypersurfaces Satisfying $R_{\xi} \phi=\phi R_{\xi}$ and $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$

We will continue our discussions under the same hypothesis $R_{\xi} \phi=\phi R_{\xi}$ as in Section 3. Further, suppose that $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$ and then $\nabla_{W} R_{\xi}=0$ since we assume that $\mu \neq 0$. In the following, arguments discussed on [6] are reviewed. Replacing X by W in (2.17), we find

$$
\begin{align*}
& (W \alpha) g(A Y, Z)-c\{\eta(Z) g(\phi A W, Y)+\eta(Y) g(\phi A W, Z)\} \\
& +\alpha g\left(\left(\nabla_{W} A\right) Y, Z\right)-\eta(A Z)\left\{g\left(\left(\nabla_{W} A\right) \xi, Y\right)+g(A \phi A W, Y)\right\} \tag{4.1}\\
& -\eta(A Y)\left\{g\left(\left(\nabla_{W} A\right) \xi, Z\right)+g(A \phi A W, Z)\right\}=0
\end{align*}
$$

by virtue of $\nabla_{W} R_{\xi}=0$. Putting $Y=\xi$ in this and making use of (2.13) and (3.6), we obtain

$$
\begin{equation*}
\alpha A \phi A W+c \phi A W=0 \tag{4.2}
\end{equation*}
$$

because U and W are mutually orthogonal. From this and (2.16), it is seen that $R_{\xi} \phi A W=0$ by virtue of (3.6), and hence $R_{\xi} A W=0$ which together with (2.16) implies that

$$
\begin{equation*}
\alpha A^{2} W=-c A W+c \mu \xi+\mu(\alpha+g(A W, W)) A \xi \tag{4.3}
\end{equation*}
$$

which unables us to obtain

$$
\begin{equation*}
\alpha g\left(A^{2} W, W\right)=\left(\mu^{2}-c\right) g(A W, W)+\alpha \mu^{2} . \tag{4.4}
\end{equation*}
$$

Since $\alpha \neq 0, \beta=\alpha \lambda$ and (3.2), it is clear that

$$
\begin{equation*}
g\left(A^{2} W, W\right)=\left(\lambda-\alpha-\frac{c}{\alpha}\right) g(A W, W)+\mu^{2} . \tag{4.5}
\end{equation*}
$$

Combining (3.5) to (4.2), we get

$$
\begin{equation*}
\alpha A^{2} U=-\left(\mu^{2}+c\right) A U-c(\lambda-\alpha) U \tag{4.6}
\end{equation*}
$$

If we apply μW to (3.3) and make use of (2.6), then we find

$$
\begin{equation*}
g(A U, U)=\mu^{2}(g(A W, W)+\alpha-\lambda) \tag{4.7}
\end{equation*}
$$

Using (4.2), we see from (4.1)

$$
\begin{aligned}
\alpha\left(\nabla_{W} A\right) X= & -(W \alpha) A X+\eta(A X)\left(\nabla_{W} A\right) \xi+g\left(\left(\nabla_{W} A\right) \xi, X\right) A \xi \\
& -\frac{c}{\alpha} \mu(w(X) \phi A W+g(\phi A W, X) W)
\end{aligned}
$$

for any vector field X, which together with (3.5) yields

$$
\begin{align*}
\alpha\left(\nabla_{W} A\right) X= & -(W \alpha) A X+\eta(A X)\left(\nabla_{W} A\right) \xi+g\left(\left(\nabla_{W} A\right) \xi, X\right) A \xi \tag{4.8}\\
& -\frac{c}{\alpha}\{w(X) A U+u(A X) W+(\lambda-\alpha)(w(X) U+u(X) W)\}
\end{align*}
$$

Now, if we put $X=W$ in (2.12), and make use of (3.5) and (4.2), then we find

$$
\begin{equation*}
\left.\left(\nabla_{W} A\right) \xi=-\phi \nabla_{W} U+(W \alpha) \xi+\frac{1}{\mu}\left(\alpha+\frac{c}{\alpha}\right)\{A U+(\lambda-\alpha) U)\right\} \tag{4.9}
\end{equation*}
$$

Also, if we take the inner product (2.12) with $A \xi$ and take account of (2.6), (3.2) and (3.4), then we obtain

$$
\alpha(X \alpha)+\mu(X \mu)=g\left(\alpha \xi+\mu W,\left(\nabla_{X} A\right) \xi\right)-g\left(A^{2} U+\lambda A U, X\right)
$$

which connected to (2.4), (2.13) and (4.6) yields

$$
\begin{equation*}
\mu\left(\nabla_{W} A\right) \xi=-\left(\alpha+\frac{c}{\alpha}\right) A U-\frac{c}{\alpha}(\lambda+\alpha) U+\mu \nabla \mu \tag{4.10}
\end{equation*}
$$

If we take the inner product (4.10) with ξ and make use of (2.13), then we find

$$
\begin{equation*}
W \alpha=\xi \mu \tag{4.11}
\end{equation*}
$$

because $A U$ and W are mutually orthogonal. Using (4.10), we can write (4.8) as

$$
\begin{align*}
& \alpha\left(\nabla_{W} A\right) X+(W \alpha) A X \\
& +\frac{1}{\mu} \eta(A X)\left\{\left(\alpha+\frac{c}{\alpha}\right) A U+\frac{c}{\alpha}(\lambda+\alpha) U-\mu \nabla \mu\right\} \\
& +\frac{1}{\mu}\left\{\left(\alpha+\frac{c}{\alpha}\right) u(A X)+\frac{c}{\alpha}(\lambda+\alpha) u(X)-\mu(X \mu)\right\} A \xi \tag{4.12}\\
& +\frac{c}{\alpha}\{w(X) A U+u(A X) W+(\lambda-\alpha)(w(X) U+u(X) W)\}=0 .
\end{align*}
$$

Putting $X=W$ in this, we get
(4.13) $\alpha\left(\nabla_{W} A\right) W+(W \alpha) A W-(W \mu) A \xi+\left(\alpha+\frac{2 c}{\alpha}\right) A U+\frac{2 c \lambda}{\alpha} U-\mu \nabla \mu=0$.

Combining (4.9) to (4.10), we obtain

$$
\mu \phi \nabla_{W} U-\mu(W \alpha) \xi+\mu \nabla \mu=2\left(\alpha+\frac{c}{\alpha}\right) A U+\left(\mu^{2}+\frac{2 c}{\alpha} \lambda\right) U
$$

If we apply ϕ to this and make use of (2.8), (2.11) and (3.3), then we find

$$
\begin{aligned}
& -\mu \nabla_{W} U-\mu^{2} g(A W, W) \xi+\mu \phi \nabla \mu \\
& =2\left(\alpha+\frac{c}{\alpha}\right)\left(\lambda A \xi-A^{2} \xi\right)-\mu\left(\mu^{2}+\frac{2 c}{\alpha} \lambda\right) W
\end{aligned}
$$

which together with (2.6) yields

$$
\begin{align*}
\mu \nabla_{W} U= & \mu \phi \nabla \mu+\left(2 c-\mu^{2}\right) A \xi+2 \mu\left(\alpha+\frac{c}{\alpha}\right) A W \tag{4.14}\\
& -\left(\alpha \mu^{2}+2 c \lambda+\mu^{2} g(A W, W)\right) \xi
\end{align*}
$$

Now, we can take a orthonormal frame field $\left\{e_{0}=\xi, e_{1}=W, e_{2}, \ldots, e_{n}, e_{n+1}=\right.$ $\left.\phi e_{1}=(1 / \mu) U, e_{n+2}=\phi e_{2}, \ldots, e_{2 n}=\phi e_{n}\right\}$ of M. Differentiating (2.6) covariantly and making use of (2.1), we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) \xi+A \phi A X=(X \alpha) \xi+\alpha \phi A X+(X \mu) W+\mu \nabla_{X} W \tag{4.15}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\mu \operatorname{div} W=\mu \sum_{i=0}^{2 n} g\left(\nabla_{e_{i}} W, e_{i}\right)=\xi h-\xi \alpha-W \mu . \tag{4.16}
\end{equation*}
$$

Taking the inner product with Y to (4.15) and taking the skew-symmetric part, we have

$$
\begin{align*}
- & 2 c g(\phi X, Y)+2 g(A \phi A X, Y) \\
= & (X \alpha) \eta(Y)-(Y \alpha) \eta(X)+\alpha g((\phi A+A \phi) X, Y) \\
& +(X \mu) w(Y)-(Y \mu) w(X) \tag{4.17}\\
& +\mu\left(g\left(\nabla_{X} W, Y\right)-g\left(\nabla_{Y} W, X\right)\right)
\end{align*}
$$

Replacing X by ξ in this and using (2.10) and (4.11), we have

$$
\begin{equation*}
\mu \nabla_{\xi} W=3 A U-\alpha U+\nabla \alpha-(\xi \alpha) \xi-(W \alpha) W \tag{4.18}
\end{equation*}
$$

Putting $X=\mu W$ in (4.15) and taking account of (4.10), we get

$$
\begin{aligned}
& -\left(\alpha+\frac{c}{\alpha}\right) A U-\frac{c}{\alpha}(\lambda+\alpha) U+\mu \nabla \mu+\mu A \phi A W \\
& =\mu(W \alpha) \xi+\mu(W \mu) W+\mu \alpha \phi A W+\mu^{2} \nabla_{W} W
\end{aligned}
$$

or, using (3.5) and (4.2),

$$
\begin{equation*}
\mu^{2} \nabla_{W} W=-2\left(\alpha+\frac{c}{\alpha}\right) A U-\left(\mu^{2}+\frac{2 c}{\alpha} \lambda\right) U+\mu \nabla \mu-\mu(W \alpha) \xi-\mu(W \mu) W \tag{4.19}
\end{equation*}
$$

Now, putting $X=U$ in (4.17) and making use of (2.6) and (3.3), we have

$$
\begin{aligned}
& \mu\left(g\left(\nabla_{U} W, Y\right)-g\left(\nabla_{Y} W, U\right)\right) \\
& =(2 c \mu-U \mu) w(Y)-(U \alpha) \eta(Y) \\
& \quad+\mu^{2} \eta(A Y)+2 \lambda \mu w(A Y)-2 \mu w\left(A^{2} Y\right)
\end{aligned}
$$

which together with (4.3) gives

$$
\begin{align*}
\mu d w(U, Y)= & (2 c \mu-U \mu) w(Y)-\{U \alpha+2 c(\lambda-\alpha)\} \eta(Y) \\
& -\left\{\mu^{2}+2(\lambda-\alpha) g(A W, W)\right\} \eta(A Y)+2 \mu\left(\lambda+\frac{c}{\alpha}\right) w(A Y) . \tag{4.20}
\end{align*}
$$

Because of (2.10) and (4.18), it is seen that

$$
\begin{equation*}
\mu d w(\xi, X)=2 u(A X)-\alpha u(X)-(\xi \alpha) \eta(X)-(W \alpha) w(X)+X \alpha \tag{4.21}
\end{equation*}
$$

Using (2.11) and (3.7), we obtain

$$
\begin{equation*}
d u(\xi, X)=(3 \lambda-2 \alpha) \eta(A X)-2 \mu w(A X)-\alpha \lambda \eta(X)+g(\phi \nabla \alpha, X) \tag{4.22}
\end{equation*}
$$

Using above two equations, (3.13) is reduced to

$$
\begin{align*}
&\left.g\left(\nabla_{X} U, Y\right)+g\left(\nabla_{Y} U, X\right)\right) \\
&= 2 c(g(X, Y)-\eta(X) \eta(Y))-2 g\left(A^{2} X, Y\right)+2 \alpha g(A X, Y) \\
&+(\xi \tau)(u(X) w(Y)+u(Y) w(X)) \\
&+\frac{1}{\alpha}\{2 u(A X)+X \alpha-(\xi \alpha) \eta(X)-(W \alpha) w(X)\} u(Y) \\
&+ \frac{1}{\alpha}\{2 u(A Y)+Y \alpha-(\xi \alpha) \eta(Y)-(W \alpha) w(Y)\} u(X) \tag{4.23}\\
&+\{(3 \lambda-2 \alpha) \eta(A X)-2 \mu w(A X) \\
&-\alpha \lambda \eta(X)+g(\phi \nabla \alpha, X)\}(\eta(Y)+\tau w(Y)) \\
&+\{(3 \lambda-2 \alpha) \eta(A Y)-2 \mu w(A Y) \\
&\quad-\alpha \lambda \eta(Y)+g(\phi \nabla \alpha, Y)\}(\eta(X)+\tau w(X)),
\end{align*}
$$

where we have used (4.21) and (4.22). Taking the trace of this and using (4.7), we find

$$
\begin{equation*}
\operatorname{div} U=2 c(n-1)+\alpha h-\operatorname{Tr} A^{2}+\lambda(\lambda-\alpha) \tag{4.24}
\end{equation*}
$$

Replacing X by U in (4.23) and using (4.6) and (4.7), we find

$$
\begin{aligned}
& g\left(\nabla_{U} U, Y\right)+g\left(\nabla_{Y} U, U\right) \\
&=(\lambda-\alpha)(Y \alpha)+2\left(2 \lambda-\alpha+\frac{c}{\alpha}\right) u(A Y) \\
&+\left\{\frac{U \alpha}{\alpha}+\frac{2 c \lambda}{\alpha}+2(\lambda-\alpha)(g(A W, W)+\alpha-\lambda)\right\} u(Y) \\
&+\{\mu(W \alpha)-(\lambda-\alpha) \xi \alpha\} \eta(Y)+\mu^{2}(\xi \tau) w(Y)
\end{aligned}
$$

Since $g\left(\nabla_{X} U, U\right)=\mu(X \mu)$, it follows that

$$
\begin{align*}
d u(U, X)= & -2 \mu(X \mu)+(\lambda-\alpha)(X \alpha)+2\left(2 \lambda-\alpha+\frac{c}{\alpha}\right) u(A X) \\
& +\left\{\frac{U \alpha}{\alpha}+\frac{2 c \lambda}{\alpha}+2(\lambda-\alpha)(g(A W, W)+\alpha-\lambda)\right\} u(X) \tag{4.25}\\
& +\{\mu(W \alpha)-(\lambda-\alpha) \xi \alpha\} \eta(X)+\mu^{2}(\xi \tau) w(X),
\end{align*}
$$

which implies that

$$
\begin{equation*}
d u(U, W)=-2 \mu(W \mu)+(\lambda-\alpha) W \alpha+\mu^{2}(\xi \tau) \tag{4.26}
\end{equation*}
$$

Because of (2.1), (2.11) and (3.3), it is seen that

$$
d \eta(U, X)=(\lambda-\alpha) \eta(A X)-2 \mu w(A X) .
$$

Putting $Z=U$ in (3.12) and using this and (2.4), we obtain

$$
\begin{aligned}
& -2 \mu g\left(\left(\nabla_{W} A\right) Y, X\right)-2 c(\eta(Y) u(X)+\eta(X) u(Y)) \\
& -d u(U, X)(\eta(Y)+\tau w(Y))-d u(U, Y)(\eta(X)+\tau w(X)) \\
& +\mu^{2}((X \tau) w(Y)+(Y \tau) w(X)) \\
& -(U \tau)(u(X) w(Y)+u(Y) w(X)) \\
& -\{(\lambda-\alpha) \eta(A X)-2 \mu w(A X)\} u(Y) \\
& -\{(\lambda-\alpha) \eta(A Y)-2 \mu w(A Y)\} u(X) \\
& +\mu^{2}\left(g\left(\nabla_{X} \xi, Y\right)+g\left(\nabla_{Y} \xi, X\right)\right) \\
& +\tau\left\{\mu^{2}\left(g\left(\nabla_{X} W, Y\right)+g\left(\nabla_{Y} W, X\right)\right)\right. \\
& \quad-d w(U, Y) u(X)-d w(U, X) u(Y)\}=0 .
\end{aligned}
$$

Substituting (4.20) into this, we obtain

$$
\begin{aligned}
2 \mu g & \left(\left(\nabla_{W} A\right) Y, X\right) \\
= & -2 c(\eta(Y) u(X)+\eta(X) u(Y))-d u(U, X)(\eta(Y)+\tau w(Y)) \\
& -d u(U, Y)(\eta(X)+\tau w(X))+\mu^{2}((X \tau) w(Y)+(Y \tau) w(X)) \\
& -(U \tau)(u(X) w(Y)+u(Y) w(X)) \\
& -\{(\lambda-\alpha) \eta(A X)-2 \mu w(A X)\} u(Y) \\
& -\{(\lambda-\alpha) \eta(A Y)-2 \mu w(A Y)\} u(X) \\
& +\mu^{2}\left(g\left(\nabla_{X} \xi, Y\right)+g\left(\nabla_{Y} \xi, X\right)\right) \\
& +\tau \mu^{2}\left(g\left(\nabla_{X} W, Y\right)+g\left(\nabla_{Y} W, X\right)\right) \\
& -\frac{1}{\alpha} u(X)\{(2 c \mu-U \mu) w(Y)-(U \alpha+2 c(\lambda-\alpha)) \eta(Y) \\
& \left.-\left\{\mu^{2}+2(\lambda-\alpha) g(A W, W)\right\} \eta(A Y)+2 \mu\left(\lambda+\frac{c}{\alpha}\right) w(A Y)\right\} \\
& -\frac{1}{\alpha} u(Y)\{(2 c \mu-U \mu) w(X)-\{U \alpha+2 c(\lambda-\alpha)\} \eta(X) \\
& \left.-\left\{\mu^{2}+2(\lambda-\alpha) g(A W, W)\right\} \eta(A X)+2 \mu\left(\lambda+\frac{c}{\alpha}\right) w(A X)\right\} .
\end{aligned}
$$

Combining this to (4.12), we have

$$
\begin{aligned}
&- 2 \mu(W \alpha) g(A Y, X) \\
&+ 2 \eta(A Y)\left\{-\left(\alpha+\frac{c}{\alpha}\right) u(A X)-\frac{c}{\alpha}(\alpha+\lambda) u(X)+\mu X \mu\right\} \\
&+ 2\left\{-\left(\alpha+\frac{c}{\alpha}\right) u(A Y)-\frac{c}{\alpha}(\alpha+\lambda) u(Y)+\mu(Y \mu)\right\} \eta(A X) \\
&- \frac{2 c \mu}{\alpha}\{u(A X) w(Y)+u(A Y) w(X) \\
&+(\lambda-\alpha)(w(X) u(Y)+w(Y) u(X))\} \\
&=-2 \alpha c(\eta(Y) u(X)+\eta(X) u(Y))-\alpha d u(U, X)(\eta(Y)+\tau w(Y)) \\
&-\alpha d u(U, Y)(\eta(X)+\tau w(X))+\alpha \mu^{2}((X \tau) w(Y)+(Y \tau) w(X)) \\
&-\alpha(U \tau)(u(X) w(Y)+u(Y) w(X))-\mu^{2}(\eta(A X) u(Y)+\eta(A Y) u(X)) \\
&+2 \alpha \mu(w(A Y) u(X)+w(A X) u(Y))+\alpha \mu^{2}\left(g\left(\nabla_{X} \xi, Y\right)+g\left(\nabla_{Y} \xi, X\right)\right) \\
&+ \mu^{3}\left(g\left(\nabla_{X} W, Y\right)+g\left(\nabla_{Y} W, X\right)\right) \\
& \quad-u(X)\{(2 c \mu-U \mu) w(Y)-(U \alpha+2 c(\lambda-\alpha)) \eta(Y) \\
&\left.\quad-\left(\mu^{2}+2(\lambda-\alpha) g(A W, W)\right) \eta(A Y)+2 \mu\left(\lambda+\frac{c}{\alpha}\right) w(A Y)\right\} \\
& \quad-u(Y)\{(2 c \mu-U \mu) w(X)-(U \alpha+2 c(\lambda-\alpha)) \eta(X) \\
&\left.\quad-\left(\mu^{2}+2(\lambda-\alpha) g(A W, W)\right) \eta(A X)+2 \mu\left(\lambda+\frac{c}{\alpha}\right) w(A X)\right\} .
\end{aligned}
$$

If we put $Y=W$ in (4.27) and take account of (2.1), (3.5) and (4.19), then we find

$$
\begin{aligned}
- & 2 \mu(W \alpha) w(A X)+\mu^{2}(X \mu) \\
+ & 2 \mu(W \mu) \eta(A X)-\frac{2 c \mu}{\alpha}\{u(A X)+(\lambda-\alpha) u(X)\} \\
= & -\mu d u(U, X)-\alpha d u(U, W)(\eta(X)+\tau w(X)) \\
& +\alpha \mu^{2}((X \tau)+(W \tau) w(X)) \\
& -\mu^{2}\{(W \alpha) \eta(X)+(W \mu) w(X)\} \\
& +\left(U \mu-\alpha(U \tau)-\frac{2 c}{\alpha} \mu g(A W, W)\right) u(X),
\end{aligned}
$$

or, using (4.25) and (4.26)

$$
\begin{aligned}
& 2 \mu(W \alpha) A W-2 c \mu U+\left\{\mu(\lambda-\alpha) \xi \alpha-3 \mu^{2} W \alpha-\alpha \mu^{2}(\xi \tau)\right\} \xi \\
& -\left\{\mu^{2}(W \mu)+\tau \mu^{2}(W \alpha)+2 \mu^{3}(\xi \tau)\right\} W+\mu^{2} \nabla \mu-\mu(\lambda-\alpha) \nabla \alpha \\
& -2 \mu(2 \lambda-\alpha) A U-\mu\left\{\frac{U \alpha}{\alpha}+2(\lambda-\alpha) g(A W, W)-2(\lambda-\alpha)^{2}\right\} U \\
& +\alpha \mu^{2}((W \tau) W+\nabla \tau)+\left\{U \mu-\alpha(U \tau)-\frac{2 c \mu}{\alpha} g(A W, W)\right\} U=0
\end{aligned}
$$

By the way, since $\alpha \tau=\mu$, we find

$$
\begin{equation*}
\alpha \mu \nabla \tau=\mu \nabla \mu-(\lambda-\alpha) \nabla \alpha \tag{4.28}
\end{equation*}
$$

Using this, above equation is reduced to

$$
\begin{align*}
& \mu \nabla \mu-(\lambda-\alpha) \nabla \alpha \\
&=(2 \lambda-\alpha) A U+\left\{\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)-(\lambda-\alpha)^{2}+c\right\} U \tag{4.29}\\
&-(W \alpha) A W+\{2 \mu(W \alpha)-(\lambda-\alpha) \xi \alpha\} \xi+(\lambda-\alpha)(2 W \alpha-\tau(\xi \alpha)) W .
\end{align*}
$$

If we take the inner product (4.29) with W, then we get

$$
\begin{equation*}
\mu(W \mu)=\{3(\lambda-\alpha)-g(A W, W)\} W \alpha-\tau(\lambda-\alpha) \xi \alpha \tag{4.30}
\end{equation*}
$$

Also, taking the inner product (4.29) with U and making use of (4.7), we obtain

$$
\begin{equation*}
\frac{U \mu}{\mu}-\frac{U \alpha}{\alpha}=\left(3 \lambda-2 \alpha+\frac{c}{\alpha}\right) g(A W, W)+(\lambda-\alpha)(2 \alpha-3 \lambda)+c . \tag{4.31}
\end{equation*}
$$

On the other hand, replacing Y by W in (4.23) and using (4.3) and (4.14), we find

$$
\begin{aligned}
& g\left(\nabla_{X} U, W\right)+g(\phi \nabla \mu, X)-\frac{\lambda-\alpha}{\mu} g(\phi \nabla \alpha, X) \\
& -(\xi \tau) u(X)+2(\lambda-\alpha) w(A X) \\
& +\left\{\frac{U \alpha}{\alpha}+(\lambda-\alpha)(5 \alpha-6 \lambda+4 g(A W, W))\right\} w(X) \\
& +\left\{\frac{U \alpha}{\mu}+\mu(4 \alpha-5 \lambda+3 g(A W, W))\right\} \eta(X)=0 .
\end{aligned}
$$

By the way, applying (4.29) by ϕ and making use of (2.6), (3.3) and (3.5), we get

$$
\begin{aligned}
& \mu \phi \nabla \mu-(\lambda-\alpha) \phi \nabla \alpha \\
& =-\frac{1}{\mu}(W \alpha) A U+\mu(\xi \tau) U+\mu^{2}(2 \lambda-\alpha) \xi-\mu(2 \lambda-\alpha) A W \\
& \quad-\mu\left\{\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)-(\lambda-\alpha)(3 \lambda-2 \alpha)+c\right\} W
\end{aligned}
$$

Substituting this into the last equation, we find

$$
\begin{align*}
& g\left(\nabla_{X} U, W\right) \\
&= \frac{W \alpha}{\mu^{2}} u(A X)+\alpha w(A X) \\
&+\left\{3(\lambda-\alpha)^{2}+\frac{c}{\alpha} g(A W, W)+c\right. \tag{4.32}\\
&\left.-\frac{U \alpha}{\alpha}-3(\lambda-\alpha) g(A W, W)\right\} w(X) \\
&+\left\{3 \mu(\lambda-\alpha-g(A W, W))-\frac{U \alpha}{\mu}\right\} \eta(X) .
\end{align*}
$$

On the other hand, (4.12) turns out, using (2.4), to be

$$
\begin{aligned}
& \alpha\left(\nabla_{X} A\right) W \\
&= \frac{c \alpha}{\mu}(\eta(X) U+2 u(X) \xi)-(W \alpha) A X \\
& \quad+\frac{1}{\mu} \eta(A X)\left\{\mu \nabla \mu-\left(\alpha+\frac{c}{\alpha}\right) A U-\frac{c}{\alpha}(\lambda+\alpha) U\right\} \\
& \quad+\frac{1}{\mu}\left\{\mu(X \mu)-\left(\alpha+\frac{c}{\alpha}\right) u(A X)-\frac{c}{\alpha}(\lambda+\alpha) u(X)\right\} A \xi \\
& \quad-\frac{c}{\alpha}\{w(X) A U+u(A X) W+(\lambda-\alpha)(u(X) W+w(X) U)\} .
\end{aligned}
$$

If we apply by ϕ to this and make use of (3.3), then we find

$$
\begin{align*}
& -\alpha \phi\left(\nabla_{X} A\right) W=(W \alpha) \phi A X+c \alpha \eta(X) W-(X \mu) U \\
& +\frac{1}{\mu} \eta(A X)\left\{\left(\alpha+\frac{c}{\alpha}\right)\{(\lambda-\alpha) A \xi-\mu A W\}-\frac{c}{\alpha} \mu(\lambda+\alpha) W-\mu \phi \nabla \mu\right\} \tag{4.33}\\
& +\frac{1}{\mu}\left\{\left(\alpha+\frac{c}{\alpha}\right) u(A X)+\frac{2 c \lambda}{\alpha} u(X)\right\} U+\frac{c}{\alpha} w(X)\left(\mu^{2} \xi-\mu A W\right)
\end{align*}
$$

Now, if we put $Z=W$ in (3.12), then we find

$$
\begin{aligned}
& 2 g\left(\phi\left(\nabla_{Y} A\right) W, X\right) \\
&= 2\left\{\left(w\left(A^{2} Y\right)-c w(Y)\right) \eta(X)-w(A Y) \eta(A X)\right\} \\
& \quad+d u(W, X)(\eta(Y)+\tau w(Y))+\tau d u(Y, X) \\
& \quad+(W \tau)(w(Y) u(X)+w(X) u(Y)) \\
& \quad+\left(g\left(\nabla_{W} U, Y\right)+g\left(\nabla_{Y} U, W\right)\right)(\eta(X)+\tau w(X)) \\
& \quad+\frac{2}{\mu}\{u(A X)+(\lambda-\alpha) u(X)\} u(Y) \\
& \quad+(Y \tau) u(X)-(X \tau) u(Y)+\tau\left(u(Y) g\left(\nabla_{W} W, X\right)\right. \\
&\left.\quad+u(X) g\left(\nabla_{W} W, Y\right)\right)
\end{aligned}
$$

Using (2.1), (2.10), (3.5), (3.8) and (4.33), we can write the above equation as

$$
\begin{aligned}
& \mu d u(X, Y) \\
&=(W \alpha) g((\phi A+A \phi) X, Y)+\frac{2 c}{\alpha} \mu(w(X) w(A Y)-w(Y) w(A X)) \\
&+\eta(A X) g(\phi \nabla \mu, Y)-\eta(A Y) g(\phi \nabla \mu, X) \\
&+\frac{2 c}{\mu \alpha}(u(X) u(A Y)-u(Y) u(A X))-(X \mu) u(Y)+(Y \mu) u(X) \\
&+\alpha((X \tau) u(Y)-(Y \tau) u(X)) \\
&+g\left(\nabla_{Y} U, W\right) \eta(A X)-g\left(\nabla_{X} U, W\right) \eta(A Y) \\
&+\left\{2 c \alpha-2 c \lambda-\mu^{2}(\alpha+g(A W, W))\right\}(\eta(X) w(Y)-\eta(Y) w(X)),
\end{aligned}
$$

which together with (4.28) and (4.32) yields

$$
\begin{align*}
& \mu d u(X, Y) \\
&=(W \alpha) g((\phi A+A \phi) X, Y)+\frac{2 c \mu}{\alpha}\{w(X) w(A Y)-w(Y) w(A X)\} \\
&+\frac{W \alpha}{\mu^{2}}\{\eta(A X) u(A Y)-\eta(A Y) u(A X)\} \\
&+\eta(A X) g(\phi \nabla \mu, Y)-\eta(A Y) g(\phi \nabla \mu, X) \tag{4.34}\\
&+\alpha\{\eta(A X) w(A Y)-\eta(A Y) w(A X)\} \\
&+\frac{2 c}{\mu \alpha}(u(X) u(A Y)-u(Y) u(A X))+\frac{\mu}{\alpha}((X \alpha) u(Y)-(Y \alpha) u(X)) \\
&+\left\{\left(\mu^{2}+c\right) g(A W, W)+\alpha \mu^{2}-c \alpha+2 c \lambda\right\}(\eta(X) w(Y)-\eta(Y) w(X)) .
\end{align*}
$$

Putting $X=\phi e_{i}$ and $Y=e_{i}$ in this and summing up for $i=1,2, \cdots, n$, we obtain

$$
\mu \sum_{i=0}^{2 n} d u\left(\phi e_{i}, e_{i}\right)=(h-\alpha-g(A W, W)) W \alpha-\mu(W \mu),
$$

where we have used $(2.6)-(2.8),(3.5)$ and (4.7). Taking the trace of (2.12), we obtain

$$
\sum_{i=0}^{2 n} g\left(\phi \nabla_{e_{i}} U, e_{i}\right)=\xi \alpha-\xi h
$$

Thus, it follows that

$$
\begin{equation*}
\mu(\xi h-\xi \alpha)=\mu(W \mu)+(g(A W, W)+\alpha-h) W \alpha \tag{4.35}
\end{equation*}
$$

which together with (4.16) gives

$$
\begin{equation*}
\mu^{2}(\operatorname{div} W)=(g(A W, W)+\alpha-h) W \alpha . \tag{4.36}
\end{equation*}
$$

We notice here that
Remark 4.1. If $A U=\rho U$ for some function ρ on Ω, then $A W \in \operatorname{span}\{\xi, W\}$ on Ω, where $\operatorname{span}\{\xi, W\}$ is a linear subspace spanned by ξ and W.

In fact, because of the hypothesis $A U=\rho U$, (3.5) reformed as

$$
\mu \phi A W=(\rho+\lambda-\alpha) U
$$

which implies that $A W=\mu \xi+(\rho+\lambda-\alpha) W \in \operatorname{span}\{\xi, W\}$.
In the previous paper [6], it is proved that
Lemma 4.2. Let M be a real hypersurface of $M_{n}(c), c \neq 0$ which satisfies $R_{\xi} \phi=$ ϕR_{ξ} and $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$. If $A W \in \operatorname{span}\{\xi, W\}$, then $\Omega=\emptyset$.
The sketch of proof. Since $A W \in \operatorname{span}\{\xi, W\}$, (3.5) becomes

$$
\begin{equation*}
A U=(g(A W, W)+\alpha-\lambda) U \tag{4.37}
\end{equation*}
$$

From (4.2) we also have

$$
g(A W, W)(\alpha A U+c U)=0
$$

Now, suppose that $g(A W, W) \neq 0$ on Ω. Then we have $\alpha A U+c U=0$ on this subset, which together with (4.37) gives

$$
\mu^{2}=\alpha g(A W, W)+c
$$

Because of (2.6), (2.16) and this fact, we verified that $R_{\xi} A \xi=0$ on the subset, which together with (3.1) and the fact $\alpha A U+c U=0$ implies that

$$
R_{\xi}(\phi A-A \phi)=0
$$

Owing to Theorem 1.1, we conclude that $A \xi=\alpha \xi$, a contradiction. Therefore we see that $g(A W, W)=0$ on Ω. So we have

$$
\begin{equation*}
A W=\mu \xi \tag{4.38}
\end{equation*}
$$

Hence (4.37) reformed as

$$
\begin{equation*}
A U=(\alpha-\lambda) U \tag{4.39}
\end{equation*}
$$

Differentiating (4.38) covariantly, we find

$$
\left(\nabla_{X} A\right) W+A \nabla_{X} W=(X \mu) \xi+\mu \nabla_{X} \xi
$$

which together with (2.4), (2.10) and (4.39) gives

$$
\begin{equation*}
\left(\nabla_{W} A\right) W=2(\lambda-\alpha) U \tag{4.40}
\end{equation*}
$$

Using this, (4.38) and (4.39), we can write (4.13) as

$$
\begin{equation*}
\mu(X \mu)=\mu(W \alpha) \eta(X)+\left(\mu^{2}+2 c\right) u(X) \tag{4.41}
\end{equation*}
$$

Differentiating this covariantly and taking account of (2.1) and (2.4), we find

$$
\begin{align*}
& Y(\mu(W \alpha)) \eta(X)-X(\mu(W \alpha)) \eta(Y) \\
& +(\mu(W \alpha)) g((\phi A+A \phi) Y, X) \tag{4.42}\\
& +2 \mu(W \alpha)(\eta(Y) u(X)-\eta(X) u(Y)) \\
& +\left(\mu^{2}+2 c\right)\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)=0,
\end{align*}
$$

which together with (2.8), (2.10), (4.34), (4.38), (4.39) and (4.40) implies that $W \alpha=0$. Thus, (4.41) and (4.42) becomes respectively to

$$
\begin{align*}
& \mu \nabla \mu=\left(\mu^{2}+2 c\right) U, \tag{4.43}\\
& \left(\mu^{2}+2 c\right)\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)=0 . \tag{4.44}
\end{align*}
$$

Using (4.38), (4.39) and these, we see from (4.34) that $\left(\mu^{2}+2 c\right)\left(\mu^{2}+c\right)=0$, which shows that $\mu^{2}+2 c=0$ on Ω. Therefore, (4.29) can be written as

$$
\mu^{2} \nabla \alpha=\left\{\mu^{2}(3 \lambda-2 \alpha)-c \alpha\right\} U,
$$

where we have used (4.38), (4.39) and the face that μ is constant on Ω.
As in the same method as those used from (4.41) to derive (4.44), we can deduce from the last equation that

$$
\left\{\mu^{2}(3 \lambda-\alpha)-c \alpha\right\}\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)=0
$$

If $g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)=0$, then similarly as above we have a contradiction. Hence we see that $\mu^{2}(3 \lambda-2 \alpha)-c \alpha=0$, which together with $\mu^{2}+2 c=0$ yields $2 \lambda-\alpha=0$. that is, $2 \mu^{2}+\alpha^{2}=0$, a contradiction. This completes the proof.

5. Constant Mean Curvature

We will continue our discussions under the same hypotheses as those stated in Section 4. Further we assume that mean curvature of the hypersurface M in $M_{n}(c), c \neq 0$ is constant. Then h is constant. So (4.35) becomes

$$
\begin{equation*}
\mu(\xi \alpha+W \mu)=(h-\alpha-g(A W, W)) W \alpha . \tag{5.1}
\end{equation*}
$$

Taking the trace of (4.12), we also have $h(W \alpha)-2 g(A \xi, \nabla \mu)=0$, which together with (2.6) and (4.11) gives

$$
\begin{equation*}
2 \mu(W \mu)=(h-2 \alpha) W \alpha . \tag{5.2}
\end{equation*}
$$

Combining the last two equations, we obtain

$$
\begin{equation*}
\mu(\xi \alpha)=\left(\frac{h}{2}-g(A W, W)\right) W \alpha . \tag{5.3}
\end{equation*}
$$

From (3.2) we have

$$
\begin{equation*}
2 \mu(\nabla \mu)=\alpha(\nabla \lambda)+(\lambda-2 \alpha) \nabla \alpha \tag{5.4}
\end{equation*}
$$

which tells us that $2 \mu(W \alpha)=\alpha(\xi \lambda)+(\lambda-2 \alpha) \xi \alpha$, which connected to (5.3) implies that

$$
\begin{equation*}
\alpha \mu(\xi \lambda)=\left\{2 \alpha \lambda-2 \alpha^{2}-\frac{h}{2} \lambda+(\lambda-2 \alpha) g(A W, W)\right\} W \alpha \tag{5.5}
\end{equation*}
$$

Combining (4.30) to (5.2) and (5.3), we get

$$
\begin{equation*}
\left\{(2 \alpha-\lambda) g(A W, W)-3 \alpha \lambda+2 \alpha^{2}+\frac{h \lambda}{\alpha}\right\} W \alpha=0 \tag{5.6}
\end{equation*}
$$

On the other hand, putting $X=Y=e_{i}$ in (3.12) and summing up for $i=$ $0,1, \cdots, 2 n$ and using (2.1) and (2.4), we find

$$
\begin{aligned}
& \phi \nabla \alpha+\left\{2 c(n-1)-\operatorname{Tr} A^{2}\right\} \eta(Z)+h \eta(A Z) \\
&= g\left(\nabla_{\xi} U, Z\right)-g\left(\nabla_{Z} U, \xi\right)+\tau\left(g\left(\nabla_{W} U, Z\right)+g\left(\nabla_{U} W, Z\right)\right) \\
& \quad+(\operatorname{div} U)(\eta(Z)+\tau w(Z))+g((\phi A+A \phi) U, Z) \\
& \quad+(W \tau) u(Z)+(U \tau) w(Z)+\tau(\operatorname{div} W) u(Z),
\end{aligned}
$$

where we have used h is constant, or using (2.10), (3.3), (3.7) and (4.24)

$$
\begin{align*}
& \phi \nabla \alpha+\frac{\mu}{\alpha}\left(\nabla_{W} U+\nabla_{U} W\right)-4 \mu A W+(W \tau+\tau(\operatorname{div} W)) U \\
& +(U \tau+\tau(\operatorname{div} U)+\mu(4 \lambda-3 \alpha-h)) W \tag{5.7}\\
& +(\lambda-\alpha)(\lambda+3 \alpha) \xi=0
\end{align*}
$$

By the way, combining (4.20) to (4.33) and taking account of (4.32), we find

$$
\begin{aligned}
\nabla_{U} W= & \frac{1}{\mu}\{\mu \phi \nabla \mu-(\lambda-\alpha) \phi \nabla \alpha\}-(\xi \tau) U+2\left(2 \lambda-\alpha+\frac{c}{\alpha}\right) A W \\
& +\left\{(\lambda-\alpha)(2 \alpha-3 \lambda)+c-\left(\lambda+\frac{c}{\alpha}\right) g(A W, W)\right\} W \\
& +\mu\left\{g(A W, W)+3 \alpha-5 \lambda-\frac{2 c}{\alpha}\right\} \xi
\end{aligned}
$$

Substituting this and (4.14) into (5.7), we obtain

$$
\begin{aligned}
& \alpha \phi \nabla \alpha+2 \mu \phi \nabla \mu-(\lambda-\alpha) \phi \nabla \alpha \\
& =4 \mu\left(\alpha-\lambda-\frac{c}{\alpha}\right) A W+(\mu(\xi \tau)-\alpha(W \tau)-\mu(\operatorname{div} W)) U \\
& \quad-4(\lambda-\alpha)\left(\mu^{2}+c\right) \xi-\tau f W
\end{aligned}
$$

for some function f on Ω. Because of (4.28), (4.36), (5.2) and (5.3), it is verified that

$$
\mu(\mu(\xi \tau)-\alpha(W \tau)-\mu(\operatorname{div} W))=(h-\lambda) W \alpha
$$

From this and (5.4), above equation can be written as

$$
\begin{equation*}
\alpha^{2} \phi \nabla \lambda=-4 \mu\left(\mu^{2}+c\right)(A W-\mu \xi)+\frac{\alpha}{\mu}(h-\lambda)(W \alpha) U-\mu f W, \tag{5.8}
\end{equation*}
$$

which together with (3.5) implies that

$$
\begin{equation*}
\alpha^{2}(\nabla \lambda-(\xi \lambda) \xi)=4\left(\mu^{2}+c\right)\{A U+(\lambda-\alpha) U\}+\alpha(h-\lambda)(W \alpha) W+f U \tag{5.9}
\end{equation*}
$$

Differentiation (4.4) with respect to W gives

$$
\begin{align*}
\alpha W\left(g\left(A^{2} W, W\right)\right)= & \left(\mu^{2}-g\left(A^{2} W, W\right)\right) W \alpha \tag{5.10}\\
& +2 \mu(\alpha+g(A W, W)) W \mu+\left(\mu^{2}-c\right) W(g(A W, W)) .
\end{align*}
$$

By the definition of $g(A W, W)$, differentiation $g(A W, W)$ with respect to X gives

$$
\alpha X(g(A W, W))=\alpha g\left(\left(\nabla_{W} A\right) W, X\right)+2 \alpha g\left(\nabla_{X} W, A W\right),
$$

which together with (4.13) yields

$$
\begin{align*}
\alpha X(g(A W, W))= & -(W \alpha) w(A X)+(W \mu) \eta(A X)-\left(\alpha+\frac{2 c}{\alpha}\right) u(A X) \tag{5.11}\\
& -\frac{2 c}{\alpha} \lambda u(X)+\mu(X \mu)+2 \alpha g\left(\nabla_{X} W, A W\right) .
\end{align*}
$$

Replacing X by W in this and making use of (4.19), we find

$$
\begin{aligned}
W(g(A W, W))= & -\left(2+\frac{1}{\alpha} g(A W, W)\right) W \alpha+\frac{2}{\mu} g(A W, \nabla \mu) \\
& +2 \mu\left(\frac{1}{\alpha}-\frac{g(A W, W)}{\mu^{2}}\right) W \mu
\end{aligned}
$$

which together with (5.10) implies that

$$
\begin{align*}
\frac{1}{2} \alpha W\left(g\left(A^{2} W, W\right)\right)= & \left\{\left(\alpha-\lambda+\frac{c}{\alpha}\right) g(A W, W)+c-\mu^{2}\right\} W \alpha \\
& +\mu\left(\lambda-\frac{c}{\alpha}+\frac{c}{\mu^{2}} g(A W, W)\right) W \mu \tag{5.12}\\
& +\left(\mu-\frac{c}{\mu}\right) g(A W, \nabla \mu)
\end{align*}
$$

On the other hand, by the definition $g\left(A^{2} W, W\right)$, we find

$$
\frac{1}{2} \alpha X\left(g\left(A^{2} W, W\right)\right)=\alpha g\left(\left(\nabla_{X} A\right) W, A W\right)+\alpha g\left(A^{2} W, \nabla_{X} W\right)
$$

for any vector field X. Putting $X=W$ in this and making use of (4.3), (4.12) and (4.19), we obtain

$$
\begin{aligned}
& \frac{1}{2} \alpha W\left(g\left(A^{2} W, W\right)\right) \\
& =\left(c-g\left(A^{2} W, W\right)\right) W \alpha \\
& \quad+\mu\left(\alpha+g(A W, W)+\frac{c}{\mu^{2}} g(A W, W)\right) W \mu \\
& \quad+\left(\mu-\frac{c}{\mu}\right) g(A W, \nabla \mu)
\end{aligned}
$$

which connected to (5.12) yields

$$
\begin{aligned}
& \left\{g\left(A^{2} W, W\right)-\left(\lambda-\alpha-\frac{c}{\alpha}\right) g(A W, W)-\mu^{2}\right\} W \alpha \\
& +\mu\left(\lambda-\alpha-\frac{c}{\alpha}-g(A W, W)\right) W \mu=0
\end{aligned}
$$

Because of (4.5), it follows that

$$
\left(\mu^{2}-c-\alpha g(A W, W)\right) W \mu=0
$$

Now, if we assume that $W \mu \neq 0$ on Ω, then we get $\alpha g(A W, W)=\mu^{2}-c$ on this subset, which together with (4.5) gives

$$
g\left(A^{2} W, W\right)=\mu^{2}+(g(A W, W))^{2}
$$

on the subset. Using these facts, it is verified that

$$
\|A W-\mu \xi-g(A W, W) W\|=0
$$

on the set. Consequently we have $A W=\mu \xi+g(A W, W) W$ on the subset. It is contradictory because of Lemma 4.2. Therefore we see that $W \mu=0$ on Ω. Thus, (5.2) becomes $(h-2 \alpha) W \alpha=0$ and hence $W \alpha=0$ because of h is constant. Therefore it is clear that $\xi \alpha=0$ and $\xi \lambda=0$ by virtue of (5.2) and (5.5).

Summing up, we conclude that
Lemma 5.1. $\xi \alpha=W \alpha=\xi \mu=W \mu=\xi \lambda=W \lambda=0$ on Ω provided that the mean curvature of M is constant.

According to Lemma 5.1, (4.29) and (5.9) reduced respectively to

$$
\begin{align*}
& \mu \nabla \mu-(\lambda-\alpha) \nabla \alpha \\
& =(2 \lambda-\alpha) A U+\left\{\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)-(\lambda-\alpha)^{2}+c\right\} U, \tag{5.13}\\
& \alpha^{2} \nabla \lambda=4\left(\mu^{2}+c\right) A U+f_{1} U, \tag{5.14}
\end{align*}
$$

where we have put $f_{1}=f+4(\lambda-\alpha)\left(\mu^{2}+c\right)$. Combining (5.13) and (5.14) to (5.4), we find

$$
\begin{equation*}
\alpha \lambda \nabla \alpha+2\left(\alpha^{2}-2 c\right) A U=f_{2} U \tag{5.15}
\end{equation*}
$$

where we have put

$$
f_{2}=f_{1}-2\left(\mu^{2}+c\right) g(A W, W)+2 \alpha(\lambda-\alpha)^{2}-2 c \alpha
$$

From (5.15) we see that $g(A W, \nabla \alpha)=0$ and hence $g(A W, \nabla \mu)=0$ by virtue of (5.13). Replacing X by ξ in (5.11) and taking account of $g(A W, \nabla \alpha)=0$ and (4.18), it is verified that

$$
\begin{equation*}
\xi(g(A W, W))=0 \tag{5.16}
\end{equation*}
$$

where we have used Lemma 5.1. Similarly we see from (4.19) and (5.11) that

$$
\begin{equation*}
W(g(A W, W))=0 \tag{5.17}
\end{equation*}
$$

Applying (5.15) by ϕ and using (2.6), (2.8) and (3.3), we find

$$
\alpha \lambda \phi \nabla \alpha=2 \mu\left(\alpha^{2}-2 c\right) A W-2 \alpha(\lambda-\alpha)\left(\alpha^{2}-2 c\right) A \xi-\mu f_{2} W
$$

From this and (3.7), we get

$$
\begin{align*}
\alpha \lambda \nabla_{\xi} U= & \mu\left(2 \alpha^{2}-3 \alpha \lambda-4 c\right) A W \\
& +\left\{3 \alpha \lambda^{2}-4 \alpha^{2} \lambda+2 \alpha^{3}+4 c(\lambda-\alpha)\right\} A \xi \tag{5.18}\\
& -(\alpha \lambda)^{2} \xi-\mu f_{2} W .
\end{align*}
$$

On the other hand, if we combine (5.13) to (5.14), then we have

$$
\begin{equation*}
\alpha^{2}(2 \lambda-\alpha) X \lambda-4 \mu\left(\mu^{2}+c\right) X \mu+4(\lambda-\alpha)\left(\mu^{2}+c\right) X \alpha=f_{3} u(X) \tag{5.19}
\end{equation*}
$$

for any vector field X, where we have put

$$
\begin{equation*}
f_{3}=(2 \lambda-\alpha) f_{1}-4\left(\mu^{2}+c\right)\left\{\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)-(\lambda-\alpha)^{2}+c\right\} \tag{5.20}
\end{equation*}
$$

Differentiating (5.19) covariantly with respect to a vector field Y, and taking the skew-symmetric part, we find

$$
\begin{aligned}
& f_{4}((X \alpha)(Y \lambda)-(Y \alpha)(X \lambda)) \\
& +\left(Y f_{3}\right) u(X)-\left(X f_{3}\right) u(Y)+f_{3}\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)=0
\end{aligned}
$$

for some function f_{4}. Replacing X by ξ in this and using (2.11) and Lemma 5.1, we obtain

$$
\left(\xi f_{3}\right) u(Y)+f_{3}\left(\mu w(A Y)+g\left(\nabla_{\xi} U, Y\right)\right)=0
$$

which tells us that $\xi f_{3}=0$ by virtue of Lemma 5.1. Therefore, above equation implies that $f_{3}\left(\mu^{2}+2 c\right) A W \in \operatorname{span}\{\xi, W\}$ by virtue of (5.18). Owing to Lemma 5.1, it is clear that $\left(\mu^{2}+2 c\right) f_{3}=0$.

We are now going to prove $f_{3}=0$ on Ω. If not, then we have $\mu^{2}+2 c=0$ on this subset and hence μ is constant. So (5.13) reformed as

$$
2 c \nabla \alpha=\left(\alpha^{2}-4 c\right) A U+c(2 \lambda-\alpha-g(A W, W)) U
$$

From (5.15) we also have

$$
\left(\alpha^{2}-2 c\right)(\nabla \alpha+2 A U)=f_{2} U
$$

Combining the last two equations, it follows that $\left(\alpha^{2}-2 c\right) A U=x U$ for some function x. Owing to Lemma 4.2 and Remark 4.1, we see that $\alpha^{2}-2 c=0$, a contradiction because of $\mu^{2}+2 c=0$. Accordingly we prove that $f_{3}=0$ and consequently it is seen that

$$
\begin{equation*}
(2 \lambda-\alpha) f_{1}=4\left(\mu^{2}+c\right)\left\{\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)-(\lambda-\alpha)^{2}+c\right\} \tag{5.21}
\end{equation*}
$$

because of (5.20). Using $f_{3}=0$ and (5.4), we can write (5.19) as

$$
\begin{equation*}
\alpha\left(\alpha^{2}-2 c\right) \nabla \lambda+2 \lambda\left(\mu^{2}+c\right) \nabla \alpha=0 \tag{5.22}
\end{equation*}
$$

By the definition of f_{2} and (5.21), it is verified that

$$
\begin{equation*}
\alpha(\alpha-2 \lambda) f_{2}=2\left(\alpha^{2}-2 c\right)\left\{\left(\mu^{2}+c\right) g(A W, W)-\alpha(\lambda-\alpha)^{2}+c \alpha\right\} \tag{5.23}
\end{equation*}
$$

Finally we prepare the following lemma for later use.
Lemma 5.2. Let $\operatorname{span}\{\xi, W\}$ be the linear subspace spanned by ξ and W. Then there exists $P \in \operatorname{span}\{\xi, W\}$ such that

$$
\begin{aligned}
g\left(A W, \nabla_{X} U\right)= & \frac{c}{\alpha} w\left(A^{2} X\right)-\left\{\mu^{2}+\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)\right\} w(A X) \\
& +g(P, X)
\end{aligned}
$$

provided that h is constant.
Proof. Putting $Y=A W$ in (4.34) and using (3.5), (4.3), (5.15) and Lemma 5.1, we find

$$
\begin{aligned}
& \mu d u(X, A W) \\
& =\frac{2 c}{\alpha} \mu\left\{g\left(A^{2} W, W\right) w(X)-g(A W, W) w(A X)\right\} \\
& \quad+\eta(A X) g(\phi \nabla \mu, A W)-\mu(\alpha+g(A W, W)) g(\phi \nabla \mu, X) \\
& \quad+\alpha\left\{g\left(A^{2} W, W\right) \eta(A X)-\mu(\alpha+g(A W, W)) w(A X)\right\} \\
& \quad+\left\{\left(\mu^{2}+c\right) g(A W, W)+\alpha \mu^{2}-c \alpha+2 c \lambda\right\}(g(A W, W) \eta(X)-\mu w(X)),
\end{aligned}
$$

which enables us to obtain

$$
\begin{aligned}
& g\left(A W, \nabla_{X} U\right)-g\left(\nabla_{A W} U, X\right) \\
& =-\alpha\left(\alpha+g(A W, W)+\frac{2 c}{\alpha^{2}} g(A W, W)\right) w(A X) \\
& \quad-(\alpha+g(A W, W)) g(\phi \nabla \mu, X)+g\left(P_{1}, X\right)
\end{aligned}
$$

for some $P_{1} \in \operatorname{span}\{\xi, W\}$. If we replace X by $A W$ in (4.23) and make use of (3.5), (4.3), (5.15) and Lemma 5.1, then we get

$$
\begin{aligned}
g(& \left.\nabla_{X} U, A W\right)+g\left(\nabla_{A W} U, X\right) \\
= & 2 c w(A X)+2 \alpha w\left(A^{2} X\right)-2 w\left(A^{3} X\right) \\
& +\left(\mu+\frac{\mu}{\alpha} g(A W, W)\right)\{(3 \lambda-2 \alpha) \eta(A X)-2 \mu w(A X) \\
& -\alpha \lambda \eta(X)+g(\phi \nabla \alpha, X)\} \\
& +\{\mu(3 \lambda-2 \alpha)(\alpha+g(A W, W))-2 \mu g(A W, W)-\alpha \lambda \mu \\
& \left.-\frac{1}{\mu} g(A U+(\lambda-\alpha) U, \nabla \alpha)\right\}(\eta(X)+\tau w(X))-2 c \mu \eta(X),
\end{aligned}
$$

which shows that

$$
\begin{aligned}
& g\left(\nabla_{X} U, A W\right)+g\left(\nabla_{A W} U, X\right) \\
& =-2 w\left(A^{3} X\right)+2 \alpha w\left(A^{2} X\right)+2 c w(A X) \\
& \quad-2(\lambda-\alpha)(\alpha+g(A W, W)) w(A X) \\
& \quad+\frac{\mu}{\alpha}(\alpha+g(A W, W)) g(\phi \nabla \alpha, X)+g\left(P_{2}, X\right)
\end{aligned}
$$

for some $P_{2} \in \operatorname{span}\{\xi, W\}$. Adding to the last two equations, we obtain

$$
\begin{aligned}
2 g\left(A W, \nabla_{X} U\right)= & -2 w\left(A^{3} X\right)+2 \alpha w\left(A^{2} X\right)+2 c w(A X) \\
& -2(\lambda-\alpha)(\alpha+g(A W, W)) w(A X) \\
& -\alpha\left(\alpha+g(A W, W)+\frac{2 c}{\alpha^{2}} g(A W, W)\right) w(A X) \\
& -(\alpha+g(A W, W))\left(\phi \nabla \mu-\frac{\mu}{\alpha} \phi \nabla \alpha\right) \\
& +g\left(P_{3}, X\right)
\end{aligned}
$$

for some $P_{3} \in \operatorname{span}\{\xi, W\}$.
By the way, applying (5.13) by ϕ, and using (2.8) and (3.3), we find

$$
\begin{equation*}
\phi \nabla \mu-\frac{\mu}{\alpha} \phi \nabla \alpha=(2 \lambda-\alpha)\{-A W+\mu \xi+(\lambda-\alpha) W\}-\varepsilon W, \tag{5.24}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
\varepsilon=\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)-(\lambda-\alpha)^{2}+c . \tag{5.25}
\end{equation*}
$$

Because of (4.3), we have

$$
\begin{aligned}
A^{3} W= & -\frac{c}{\alpha} A^{2} W+(\lambda-\alpha)(\alpha+g(A W, W)) A W \\
& +\mu\left(\alpha+\frac{c}{\alpha}+g(A W, W)\right) A \xi
\end{aligned}
$$

Combining the last three equations, we obtain

$$
\begin{aligned}
& g\left(A W, \nabla_{X} U\right) \\
& =\frac{c}{\alpha} w\left(A^{2} X\right)-\left\{\mu^{2}+\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)\right\} w(A X)+g\left(P_{4}, X\right)
\end{aligned}
$$

for some $P_{4} \in \operatorname{span}\{\xi, W\}$. The completes the proof.

6. Proof of the Main Theorem

We will continue our discussions under the same hypotheses as those stated in Section 5. Because of (5.13) and (5.25), we have

$$
\begin{equation*}
\mu(X \mu)-(\lambda-\alpha) X \alpha=(2 \lambda-\alpha) u(A X)+\varepsilon u(X) \tag{6.1}
\end{equation*}
$$

for any vector field X. Differentiating this covariantly with respect to a vector field Y and taking the skew-symmetric part, we find

$$
\begin{align*}
& (X \lambda)(Y \alpha)-(Y \lambda)(X \alpha) \\
& =(2 Y \lambda-Y \alpha) u(A X)-(2 X \lambda-X \alpha) u(A Y) \\
& \quad+c \mu(2 \lambda-\alpha)(\eta(Y) w(X)-\eta(X) w(Y)) \tag{6.2}\\
& \quad+(2 \lambda-\alpha)\left(g\left(A \nabla_{Y} U, X\right)-g\left(A \nabla_{X} U, Y\right)\right) \\
& \quad+(Y \varepsilon) u(X)-(X \varepsilon) u(Y)+\varepsilon\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right),
\end{align*}
$$

where we have used (2.4) and (2.8). From (5.16), (5.25) and Lemma 5.1, we have $\xi \varepsilon=0$. If we put $Y=\xi$ in (6.2) and make use of (2.6) and $\xi \varepsilon=0$, we find

$$
\begin{aligned}
& c \mu(2 \lambda-\alpha) w(X)-(2 \lambda-\alpha)\left(g\left(\alpha \xi+\mu W, \nabla_{X} U\right)-g\left(\nabla_{\xi} U, A X\right)\right) \\
& -\varepsilon\left(g\left(\nabla_{X} U, \xi\right)+g\left(\nabla_{\xi} U, X\right)\right)=0
\end{aligned}
$$

where we have used Lemma 5.1, or using (2.11) and (4.32),

$$
\begin{equation*}
(2 \lambda-\alpha) A \nabla_{\xi} U+\varepsilon \nabla_{\xi} U+\mu \varepsilon A W \in \operatorname{span}\{\xi, W\} \tag{6.3}
\end{equation*}
$$

From (5.17), (5.24) and Lemma 5.1, we have $W \varepsilon=0$. Putting $Y=W$ in (6.2) and using Lemma 5.1 and $W \varepsilon=0$, we obtain

$$
\begin{align*}
& (2 \lambda-\alpha)\left(g\left(\nabla_{X} U, A W\right)-g\left(A \nabla_{W} U, X\right)+c \mu \eta(X)\right) \\
& +\varepsilon\left(g\left(\nabla_{X} U, W\right)-g\left(\nabla_{W} U, X\right)\right)=0 . \tag{6.4}
\end{align*}
$$

By the way, putting $Y=W$ in (4.34), we have

$$
\begin{aligned}
& g\left(\nabla_{X} U, W\right)-g\left(\nabla_{W} U, X\right) \\
& =-\left(\alpha+\frac{2 c}{\alpha}\right) w(A X)-g(\phi \nabla \mu, X)+g\left(P_{5}, X\right)
\end{aligned}
$$

for some $P_{5} \in \operatorname{span}\{\xi, W\}$, which together with Lemma 5.2 and (6.3) implies that

$$
\begin{aligned}
& (2 \lambda-\alpha)\left\{\frac{c}{\alpha} A^{2} W-\left(\mu^{2}+\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W)\right) A W-A \nabla_{W} U\right\} \\
& -\varepsilon\left\{\left(\alpha+\frac{2 c}{\alpha}\right) A W+\phi \nabla \mu\right\} \in \operatorname{span}\{\xi, W\}
\end{aligned}
$$

It follows from this and (4.3) and (4.14) that

$$
\begin{aligned}
& (2 \lambda-\alpha) A \phi \nabla \mu+\varepsilon \phi \nabla \mu \\
& +(2 \lambda-\alpha)\left\{\frac{c}{\alpha} A^{2} W+\left(\lambda-\alpha+\frac{c}{\alpha}\right) g(A W, W) A W\right\} \\
& +\varepsilon\left(\alpha+\frac{2 c}{\alpha}\right) A W \in \operatorname{span}\{\xi, W\}
\end{aligned}
$$

On the other hand, applying (5.23) by A, we find

$$
A \phi \nabla \mu=\frac{\mu}{\alpha} A \phi \nabla \alpha-(2 \lambda-\alpha)\left\{A^{2} W-\mu A \xi-(\lambda-\alpha) A W\right\}-\varepsilon A W .
$$

Substituting this into the last equation, we obtain

$$
\begin{align*}
& \frac{\mu}{\alpha}(2 \lambda-\alpha) A \phi \nabla \mu+\varepsilon \phi \nabla \mu+(2 \lambda-\alpha) \frac{c}{\alpha} A^{2} W \\
& +\left\{(2 \lambda-\alpha)^{2}\left(\lambda-\alpha+\frac{c}{\alpha}\right)\right. \tag{6.5}\\
& \left.+(2 \lambda-\alpha)\left((\lambda-\alpha)^{2}-c\right)+\varepsilon\left(\alpha+\frac{2 c}{\alpha}\right)\right\} A W \in \operatorname{span}\{\xi, W\} .
\end{align*}
$$

In the next place we have from (3.7)

$$
\begin{equation*}
A \nabla_{\xi} U=\mu(3 \lambda-2 \alpha) A W-3 \mu A^{2} W+2 \mu^{2} A \xi+A \phi \nabla \alpha \tag{6.6}
\end{equation*}
$$

which together with (6.3) implies that

$$
\begin{aligned}
& \frac{2 \lambda-\alpha}{\mu} A \phi \nabla \alpha+\frac{\varepsilon}{\mu} \phi \nabla \alpha-2 \varepsilon A W \\
& -(2 \lambda-\alpha)\left\{3 A^{2} W+(2 \alpha-3 \lambda) A W\right\} \in \operatorname{span}\{\xi, W\} .
\end{aligned}
$$

Combining this to (6.5), we obtain

$$
\begin{aligned}
& \varepsilon\left(\phi \nabla \mu-\frac{\mu}{\alpha} \phi \nabla \alpha\right)+\varepsilon\left(2 \lambda-\alpha+\frac{2 c}{\alpha}\right) A W \\
& +(\lambda-\alpha)(2 \lambda-\alpha)\left(3 A^{2} W+(2 \alpha-3 \lambda) A W\right) \\
& +(2 \lambda-\alpha)\left\{(2 \lambda-\alpha)\left(\lambda-\alpha+\frac{c}{\alpha}\right)+(\lambda-\alpha)^{2}-c\right\} A W \\
& +\frac{c}{\alpha}(2 \lambda-\alpha) A^{2} W \in \operatorname{span}\{\xi, W\}
\end{aligned}
$$

which together with (4.3) and (5.24) implies that

$$
\left\{2 \varepsilon \alpha-(2 \lambda-\alpha)\left(\mu^{2}+c\right)\right\} A W \in \operatorname{span}\{\xi, W\}
$$

Because of Lemma 4.2, it follows that $2 \alpha \varepsilon=(2 \lambda-\alpha)\left(\mu^{2}+c\right)$. Thus, it is, using (5.23) and (5.24), verified that

$$
\begin{equation*}
\alpha f_{2}+\left(\alpha^{2}-2 c\right)\left(\mu^{2}+c\right)=0 \tag{6.7}
\end{equation*}
$$

by virtue of $2 \lambda-\alpha \neq 0$ on Ω.
Using same method as that used to derive (6.2) from (6.1), we can deduce from (5.15) that

$$
\begin{equation*}
2\left(\alpha^{2}-2 c\right) A \nabla_{\xi} U-f_{2}\left(\nabla_{\xi} U+\mu A W\right) \in \operatorname{span}\{\xi, W\} \tag{6.8}
\end{equation*}
$$

where we have used (2.4), (2.11), (4.3), (4.32), (5.23) and Lemma 5.1.
By the way we see from (5.18) that

$$
\begin{aligned}
& \alpha \lambda A \nabla_{\xi} U-\mu\left\{3 \alpha \lambda^{2}-4 \alpha^{2} \lambda+2 \alpha^{3}\right. \\
& \left.+c(7 \lambda-6 \alpha)+\frac{4 c^{2}}{\alpha}-f_{2}\right\} A W \in \operatorname{span}\{\xi, W\}
\end{aligned}
$$

because of (4.3). Substituting this into (6.8) and taking account of (5.18), we obtain

$$
\begin{aligned}
& \left\{\left(\alpha^{2}-2 c\right)\left(3 \alpha^{2} \lambda^{2}-4 \alpha^{3} \lambda+2 \alpha^{4}+c\left(7 \alpha \lambda-6 \alpha^{2}\right)+4 c^{2}\right)\right. \\
& \left.-\alpha f_{2}\left(2 \alpha^{2}-\alpha \lambda-4 c\right)\right\} A W \in \operatorname{span}\{\xi, W\}
\end{aligned}
$$

According to Lemma 4.2, we verify that
(6.9) $\left(\alpha^{2}-2 c\right)\left\{3 \alpha^{2} \lambda^{2}-4 \alpha^{3} \lambda+2 \alpha^{4}+c\left(7 \alpha \lambda-6 \alpha^{2}\right)+4 c^{2}\right\}=\alpha f_{2}\left(2 \alpha^{2}-\alpha \lambda-4 c\right)$,
which together with (6.7) yields $\left(\alpha^{2}-2 c\right)\left(\alpha^{2}-2 c-2 \alpha \lambda\right)=0$.
If $\alpha^{2}-2 c \neq 0$, then we have $\alpha^{2}-2 \alpha \lambda-2 c=0$ on this subset, which shows that $\alpha \nabla \lambda=(\alpha-\lambda) \nabla \alpha$. Thus, (5.22) reformed as $\lambda \nabla \alpha=0$ and hence $\nabla \alpha=0$ on the subset. Accordingly, using Remark 4.1 and Lemma 4.2, it is contradictory.

Hence it is verified that $\alpha^{2}-2 c=0$ on Ω, which tells us that α is constant. So (3.2) becomes $\mu^{2}=\alpha \lambda-2 c$, which implies that $2 \mu \nabla \mu=\alpha \nabla \lambda$. Thus, (6.1) reformed as

$$
\frac{\alpha}{2} \nabla \lambda=(2 \lambda-\alpha) A U+\varepsilon U,
$$

which together with $2 \alpha \varepsilon=(2 \lambda-\alpha)\left(\mu^{2}+c\right)$ and $\alpha^{2}=2 c$ implies that

$$
\frac{2 c}{2 \lambda-\alpha} \nabla \lambda=2 \alpha A U+\left(\mu^{2}+c\right) U
$$

because $2 \lambda-\alpha \neq 0$ on Ω. Therefore, it is clear that

$$
\frac{2 c}{2 \lambda-\alpha} \nabla \lambda=2 \alpha A U+(\alpha \lambda-c) U
$$

Using the same method as that used to derive (5.3) from (5.4), we can deduce from this that

$$
2 \alpha A \nabla_{\xi} U+(\alpha \lambda-c) \nabla_{\xi} U+\mu(\alpha \lambda-c) A W \in \operatorname{span}\{\xi, W\}
$$

which together with $(4.3),(5.18),(6.6)$ and the fact that $\alpha^{2}=2 c$ implies that

$$
\alpha \lambda A W \in \operatorname{span}\{\xi, W\}
$$

Because of Lemma 4.2, we see that $\alpha \lambda=0$. This is not compatible with (3.2). It is contradictory. Hence, we conclude that $\Omega=\emptyset$, that is, $A \xi=\alpha \xi$ on M. Consequently we verify that $R_{\xi} S=S R_{\xi}$ because of (2.18). Therefore from Theorem 1.2 ([10]) M is homogeneous real hypersurfaces of Type A.

Let M be of Type A. Then M always satisfies $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$ and mean curvature is constant. From (2.16), it is easy to see that $\phi R_{\xi}=R_{\xi} \phi$.

Consequently we conclude that
Theorem 6.1. Let M be a real hypersurface with constant mean curvature of a complex space form $M_{n}(c), c \neq 0, n \geq 3$ which satisfies $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$. Then M holds $\phi R_{\xi}=R_{\xi} \phi$ if and only if $A \xi=0$ or M is locally congruent to one of following:
(I) In cases that $M_{n}(c)=P_{n} \mathbb{C}$ with $\eta(A \xi) \neq 0$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / 2$ and $r \neq \pi / 4$;
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $P_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$, where $0<r<\pi / 2$ and $r \neq \pi / 4$.
(II) In cases $M_{n}(c)=H_{n} \mathbb{C}$,
(A_{0}) a horosphere;
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1} \mathbb{C}$;
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$.

References

[1] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperblic spaces, J. Reine Angew. Math., 395(1989), 132-141.
[2] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269(1982), 481-499.
[3] J. T. Cho and U-H. Ki, Real hypersurfaces in complex projective spaces in terms of Jacobi operators, Acta Math. Hungar., 80(1998), 155-167.
[4] J. T. Cho and U-H. Ki, Real hypersurfaces in complex space form with Reeb flow symmetric Jacobi operator, Canadian Math. Bull., 51(2008), 359-371.
[5] U-H. Ki, I. -B. Kim and D. H. Lim, Characterizations of real hypersurfaces of type A in a complex space form, Bull. Korean Math. Soc., 47(2010), 1-15.
[6] U-H Ki, S. J. Kim and H. Kurihara, Jacobi operators with respect to the Reeb vector fields on real hypersurfaces in a nonflat complex space form, Kyungpook Math. J., 56(2016), 541-575.
[7] U-H. Ki and H. Kurihara, Commuting structure Jacobi operator for real hypersurfaces in complex space forms, Advances in Pure Math., 3(2013), 264-276.
[8] U-H. Ki, H. Kurihara, S. Nagai and R. Takagi, Characterizations of real hypersurfaces of type A in a complex space form in terms of the structure Jacobi operator, Toyama Math. J., 32(2009), 5-23.
[9] U-H. Ki, H. Kurihara and R. Takagi, Jacobi operators along the structure flow on real hypersurfaces in a nonflat complex space form, Tsukuba J. Math., 33(2009), 39-56.
[10] U-H. Ki, S. Nagai and R. Takagi, The structure vector field and structure Jacobi operator of real hypersurfaces in nonflat complex space forms, Geom. Dedicata, 149(2010), 161-176.
[11] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1986), 137-149.
[12] M. Ortega, J. D. Pérez and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math., 36(2006), 1603-1613.
[13] J. D. Pérez, F. G. Santos and Y. J. Suh Real hypersurfaces in complex projective spaces whose structure Jacobi operator is D-parallel, Bull. Belg. Math. Soc. Simon Stevin, 13(2006), 459-469.
[14] J. D. Pérez, F. G. Santos and Y. J. Suh Real hypersurfaces in nonflat complex space forms with commuting structure Jacobi operator, Houston J. Math., 33(2007), 10051009.
[15] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 19(1973), 495-506.
[16] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I,II, J. Math. Soc. Japan, 15(1975), 43-53, 507-516.

