• Title/Summary/Keyword: complete bipartite

Search Result 31, Processing Time 0.021 seconds

SIGNED TOTAL κ-DOMATIC NUMBERS OF GRAPHS

  • Khodkar, Abdollah;Sheikholeslami, S.M.
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.551-563
    • /
    • 2011
  • Let ${\kappa}$ be a positive integer and let G be a simple graph with vertex set V(G). A function f : V (G) ${\rightarrow}$ {-1, 1} is called a signed total ${\kappa}$-dominating function if ${\sum}_{u{\in}N({\upsilon})}f(u){\geq}{\kappa}$ for each vertex ${\upsilon}{\in}V(G)$. A set ${f_1,f_2,{\ldots},f_d}$ of signed total ${\kappa}$-dominating functions of G with the property that ${\sum}^d_{i=1}f_i({\upsilon}){\leq}1$ for each ${\upsilon}{\in}V(G)$, is called a signed total ${\kappa}$-dominating family (of functions) of G. The maximum number of functions in a signed total ${\kappa}$-dominating family of G is the signed total k-domatic number of G, denoted by $d^t_{kS}$(G). In this note we initiate the study of the signed total k-domatic numbers of graphs and present some sharp upper bounds for this parameter. We also determine the signed total signed total ${\kappa}$-domatic numbers of complete graphs and complete bipartite graphs.

FOOTPRINT AND MINIMUM DISTANCE FUNCTIONS

  • Nunez-Betancourt, Luis;Pitones, Yuriko;Villarreal, Rafael H.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.85-101
    • /
    • 2018
  • Let S be a polynomial ring over a field K, with a monomial order ${\prec}$, and let I be an unmixed graded ideal of S. In this paper we study two functions associated to I: The minimum distance function ${\delta}_I$ and the footprint function $fp_I$. It is shown that ${\delta}_I$ is positive and that $fp_I$ is positive if the initial ideal of I is unmixed. Then we show that if I is radical and its associated primes are generated by linear forms, then ${\delta}_I$ is strictly decreasing until it reaches the asymptotic value 1. If I is the edge ideal of a Cohen-Macaulay bipartite graph, we show that ${\delta}_I(d)=1$ for d greater than or equal to the regularity of S/I. For a graded ideal of dimension ${\geq}1$, whose initial ideal is a complete intersection, we give an exact sharp lower bound for the corresponding minimum distance function.

Sufficient Conditions for Compatibility of Unequal-replicate Component Designs

  • Park, Dong-Kwon
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.513-522
    • /
    • 1994
  • A multi-dimensional design is most easily constructed via the amalgamation of one-dimensional component block designs. However, not all sets of component designs are compatible to be amalgamated. The conditions for compatibility are related to the concept of a complete matching in a graph. In this paper, we give sufficient conditions for unequal-replicate designs. Two types of conditions are proposed; one is based on the number of verices adjacent to at least one vertex and the other is ona a degree of vertex, in a bipartite graph. The former is an extension of the sufficient conditions of equal-replicate designs given by Dean an Lewis (1988).

  • PDF

ON EIGENSHARPNESS AND ALMOST EIGENSHARPNESS OF LEXICOGRAPHIC PRODUCTS OF SOME GRAPHS

  • Abbasi, Ahmad;Taleshani, Mona Gholamnia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.685-695
    • /
    • 2022
  • The minimum number of complete bipartite subgraphs needed to partition the edges of a graph G is denoted by b(G). A known lower bound on b(G) states that b(G) ≥ max{p(G), q(G)}, where p(G) and q(G) are the numbers of positive and negative eigenvalues of the adjacency matrix of G, respectively. When equality is attained, G is said to be eigensharp and when b(G) = max{p(G), q(G)} + 1, G is called an almost eigensharp graph. In this paper, we investigate the eigensharpness and almost eigensharpness of lexicographic products of some graphs.

COMPUTATION OF SOMBOR INDICES OF OTIS(BISWAPPED) NETWORKS

  • Basavanagoud, B.;Veerapur, Goutam
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.205-225
    • /
    • 2022
  • In this paper, we derive analytical closed results for the first (a, b)-KA index, the Sombor index, the modified Sombor index, the first reduced (a, b)-KA index, the reduced Sombor index, the reduced modified Sombor index, the second reduced (a, b)-KA index and the mean Sombor index mSOα for the OTIS biswapped networks by considering basis graphs as path, wheel graph, complete bipartite graph and r-regular graphs. Network theory plays a significant role in electronic and electrical engineering, such as signal processing, networking, communication theory, and so on. A topological index (TI) is a real number associated with graph networks that correlates chemical networks with a variety of physical and chemical properties as well as chemical reactivity. The Optical Transpose Interconnection System (OTIS) network has recently received increased interest due to its potential uses in parallel and distributed systems.

AN EXTREMAL PROBLEM ON POTENTIALLY $K_{r,r}$-ke-GRAPHIC SEQUENCES

  • Chen, Gang;Yin, Jian-Hua
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.49-58
    • /
    • 2009
  • For $1{\leq}k{\leq}r$, let ${\sigma}$($K_{r,r}$ - ke, n) be the smallest even integer such that every n-term graphic sequence ${\pi}$ = ($d_1$, $d_2$, ..., $d_n$) with term sum ${\sigma}({\pi})$ = $d_1$ + $d_2$ + ${\cdots}$ + $d_n\;{\geq}\;{\sigma}$($K_{r,r}$ - ke, n) has a realization G containing $K_{r,r}$ - ke as a subgraph, where $K_{r,r}$ - ke is the graph obtained from the $r\;{\times}\;r$ complete bipartite graph $K_{r,r}$ by deleting k edges which form a matching. In this paper, we determine ${\sigma}$($K_{r,r}$ - ke, n) for even $r\;({\geq}4)$ and $n{\geq}7r^2+{\frac{1}{2}}r-22$ and for odd r (${\geq}5$) and $n{\geq}7r^2+9r-26$.

  • PDF

A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR MODULES

  • Safaeeyan, Saeed;Baziar, Mohammad;Momtahan, Ehsan
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.87-98
    • /
    • 2014
  • Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say ${\Gamma}(M)$, such that when M = R, ${\Gamma}(M)$ is exactly the classic zero-divisor graph. Many well-known results by D. F. Anderson and P. S. Livingston, in [5], and by D. F. Anderson and S. B. Mulay, in [6], have been generalized for ${\Gamma}(M)$ in the present article. We show that ${\Gamma}(M)$ is connected with $diam({\Gamma}(M)){\leq}3$. We also show that for a reduced module M with $Z(M)^*{\neq}M{\backslash}\{0\}$, $gr({\Gamma}(M))={\infty}$ if and only if ${\Gamma}(M)$ is a star graph. Furthermore, we show that for a finitely generated semisimple R-module M such that its homogeneous components are simple, $x,y{\in}M{\backslash}\{0\}$ are adjacent if and only if $xR{\cap}yR=(0)$. Among other things, it is also observed that ${\Gamma}(M)={\emptyset}$ if and only if M is uniform, ann(M) is a radical ideal, and $Z(M)^*{\neq}M{\backslash}\{0\}$, if and only if ann(M) is prime and $Z(M)^*{\neq}M{\backslash}\{0\}$.

THE POWER OF PROGRAMMED GRAMMARS WITH GRAPHS FROM VARIOUS CLASSES

  • Barbaiani Madalina;Bibire Cristina;Dassow Jurgen;Delaney Aidan;Fazekas Szilard;Ionescu Mihai;Liu Guangwu;Lodhi Atif;Nagy Benedek
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.21-38
    • /
    • 2006
  • Programmed grammars, one of the most important and well investigated classes of grammars with context-free rules and a mechanism controlling the application of the rules, can be described by graphs. We investigate whether or not the restriction to special classes of graphs restricts the generative power of programmed grammars with erasing rules and without appearance checking, too. We obtain that Eulerian, Hamiltonian, planar and bipartite graphs and regular graphs of degree at least three are pr-universal in that sense that any language which can be generated by programmed grammars (with erasing rules and without appearance checking) can be obtained by programmed grammars where the underlying graph belongs to the given special class of graphs, whereas complete graphs, regular graphs of degree 2 and backbone graphs lead to proper subfamilies of the family of programmed languages.

An Improvement of the Deadlock Avoidance Algorithm (Deadlock 회피책에 대한 개선방안 연구)

  • Kim, Tae-Yeong;Park, Dong-Won
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 1997
  • In this paper, the follow-up works of Habermann's deadlock avoidance algorithm is investigated from the view of correction, efficiency and concurrency. Habermann's deadlock avoidance algorithm is briefly surveyed and in-depth discussion of follow-up algorithms modified and improved is presented. Then, further improvement of Kameda's algorithm will be discussed. His algorithm for testing deadlock-freedom in computer system converts the Habermann's model into a labeled bipartite graph so that the deadlock detection problem can be equivalent to finding complete matching for Mormon marriage problem. His algorithm has a running time of O($mn^1.5$) because Dinic's algorithm is used. The speed of above algorithm can be enhanced by employing a faster algorithm for finding a maximal matching. The wave method by Kazanov is used for.

  • PDF

L(4, 3, 2, 1)-PATH COLORING OF CERTAIN CLASSES OF GRAPHS

  • DHANYASHREE;K.N. MEERA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.511-524
    • /
    • 2023
  • An L(p1, p2, p3, . . . , pm)-labeling of a graph G is an assignment of non-negative integers, called as labels, to the vertices such that the vertices at distance i should have at least pi as their label difference. If p1 = 4, p2 = 3, p3 = 2, p4 = 1, then it is called a L(4, 3, 2, 1)-labeling which is widely studied in the literature. A L(4, 3, 2, 1)-path coloring of graphs, is a labeling g : V (G) → Z+ such that there exists at least one path P between every pair of vertices in which the labeling restricted to this path is a L(4, 3, 2, 1)-labeling. This concept was defined and results for some simple graphs were obtained by the same authors in an earlier article. In this article, we study the concept of L(4, 3, 2, 1)-path coloring for complete bipartite graphs, 2-edge connected split graph, Cartesian product and join of two graphs and prove an existence theorem for the same.