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AN EXTREMAL PROBLEM ON POTENTIALLY
K, , — ke-GRAPHIC SEQUENCES

GANG CHEN AND JIAN-HUA YIN*

ABsTtRACT. For 1 <k <7, let 0(Krr — ke, n) be the smallest even integer
such that every n-term graphic sequence © = (d1,d2, ... ,dn) with term
sum o(n) = dy +da + - +dn > o(Krr — ke,n) has a realization G
containing K, — ke as a subgraph, where K, — ke is the graph obtained
from the r x r complete bipartite graph Ky, by deleting k edges which
form a matching. In this paper, we determine o(Ky,r — ke, n) for even
r(>4)andn > 77"2—1—%7'—22 and for odd r (> 5) and n > 7r2 + 9r — 26.

AMS Mathematics Subject Classification: 05C35.
Key words and phrases: Graph, degree sequence, potentially Krr — ke-
graphic sequence.

1. Introduction

The set of all sequences m = (d1,d,...,d,) of nonnegative integers with
d; < n—1 for each % is denoted by N'S,,. A sequence n € NS, is said to be graphic
if it is the degree sequence of a simple graph G on n vertices, and such a graph
G is called a realization of w. The set of all graphic non-increasing sequences in
NS, is denoted by GS,. For a sequence m = (di,da,...,dn) € NSy, denote
o(m) = di+da+- - -+d,. For given a graph H, a sequence m € GS,, is potentially
H-graphic if there exists a realization of 7 containing H as a subgraph. Gould
et al. [3] considered the following variation of the classical Turdn-type extremal
problems: for given a graph H, determine the smallest even integer o(H, n) such
that every sequence 7 € GS, with o(r) > o(H,n) is potentially H-graphic. If
H = K, 1, the complete graph on r+1 vertices, this problem was considered by
Erdés et al. [2] where they showed that o(K3,n) = 2n for n > 6 and conjectured
that o(Kyr41,n) = (r — 1)(2n — r) + 2 for sufficiently large n. Gould et al. [3]
and Li et al. [5] independently proved it for r = 3. Recently, Li et al. [6,7]

~proved that the conjecture is true for 7 = 4 and » > 10 and for » > 5 and
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n > (2) + 3. For H = K, ,, the r X s complete bipartite graph, Gould et al.
[3] determined o(K22,n) for n > 4. Yin et al. [8) determined o(K33,n) for
n > 6 and o(Ky4,n) for n > 8. Yin et al. [9] also determined o(K,,r,n) for
even 7 (> 4) and n > 4r? — r — 6 and for odd r (= 3)and n > 4r? 4+ 3r — 8.
Recently, Yin et al. [10,11] further determined o(K,s,n) for s > r > 1 and
sufficiently large n. The purpose of this paper is to determine o(K,., — ke, n)
for even r (> 4) and n > 7r% + Lr — 22 (Theorem 6) and for odd r (> 5) and
n > 7r? + 9r — 26 (Theorem 7), where 1 < k < r and K, — ke is the graph
obtained from K, . by deleting k edges which form a matching.

2. Preliminaries

In order to prove our main results, we need the following known theorems.
Let # = (d1,ds,... ,d,) € NS, be a non-increasing sequence. Denote fm)y =
maz{i | d; > i} and define an n-by-n matrix A = (a;;) as follows: if d; > i, then

G = 1 if1<j<d;+1andj#1,
*) 71 0 otherwise,
and if d; < 7, then
L1 1)<,
71 0 otherwise.

f(x) and A are called the trace and the left-most off-diagonal matriz of m, re-
spectively. The column sum vector of A, denoted by T = (dq,da, . - - ,%), is
called the corrected conjugate vector of m. Clearly, the row sum vector of A is 7
and o (%) = o(n).

Theorem 1. [1] Let 7 = (dy,dz,...,d,) € NS, be a non-increasing sequence
with even o(w). Then = is graphic if and only if dy-+do+- - +d; < dy+do+- - +d;
for each i =1,2,..., f(n).

For a non-increasing sequence © = (dy,d2,...,dn) € NSy, let di > dy >
-+« > d7,_, be the rearrangement of dy — 1,...,dg, —1,dg,+1,-..dn—1. Then
n’ = (dy,dj,...,d,_;) is called the residual sequence of . It is easy to see that
if n’ is graphic then 7 is also graphic, since a realization G of 7 can be obtained
from a realization G’ of n’ by adding a new vertex of degree d,, and joining it
to the vertices whose degrees are reduced by one in going from 7 to 7’. In fact,
more is true:

Theorem 2. [4] Let w = (d1,da, ... ,dy) € NS, be a non-increasing sequence.
Then m is graphic if and only if ©’ is graphic.

Theorem 3. [7) If r > 5, then 0(Kyp41,n) < 2n(r—2)+8 for2r+2 <n < (3)+3
and o(Kpy1,m) = (r—=1)(2n—7)+2 forn> () + 3.

Theorem 4. (8] Let 7 = (d1,...,drydrst1y- - ydrtssQripstly.-- ydn) € GSy,
where drys > 145 —1 and d,, > . Then © is potentially K, ,-graphic.
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Theorem 5. [8] Let 7 = (di,...,dr,dri1, ..., rgs, Grggsis- -+ ,dn) € GSn,y
whered, > 7 +5—1, dpys <T+s5—2and dy, > 7. Ifn> (r+s)(s—1), then
m 48 potentially K, ;-graphic.
In order to prove our main results, we also borrow an idea from [8,11]. Let
= (dl,... N S AT T ydor, dopyty .- - ,dn) e NS,,

where dy > - > dr1 > 7, dp >r—1,dpy1 > - >dor >rand dopy1 > -+ 2
dn, > 7. Let

(d27 e 3d7‘7d7‘+1 -1,... vd'r‘+d1 - 1ad7‘+d1+15 e ’dn)

71'/ _ if d1 S n—r,
! (d2—1,...,ddy4r—n+1 — L daysr—nt2, .-+ dry drp1 — ydn—1)
ifdi>n—r,

and /= (d5), ..., dM dD, 0 d d(l)) where di > . > d
is the rearrangement of the first » — 1 terms in =, dV. = =dpps—1lfor1<i<r

T
and dng)H > d is the rearrangement of the ﬁr?al n — 2r terms in 7.
For ! (d(l) L dD DY, dggl, o dD), i d > > dY) >

r and dr 2 > r — 1, we can similarly define 74 as follows let

@, dD,dh, 1, ’d(l)d<“ 1, dﬁﬁdé“—}—l’ o d)
m=q " ?1%1) =T 1) 1)

(dg "~ dd<”+ P dd;1)+r—n+3 Ll - ’

dH — 1) if d(l) >n—r,
and 7y = (d:(f), o ,d£«2),dgl, e dgi),dé?_kl, ..., d?), where d:(f) > >d?
is the rearrangement of the first r — 2 terms in 75, dﬁz dgzi —lforl1<i<r
and dg)ﬂ .. > d? is the rearrangement of the final n — 27 terms in 7. For
k=3,4,...,r—1in turn, ifdgc_l) > 2> dik__ll) > r and dﬁk_l) >r —1, the

definitions of 7}, and 7} are similar.
For n”_, = (d¥~V,d"30, .. ,de™0 a0y, . de ), it Y 2 -1,
we define 7/ as follow: let

1 - 1 -
o= (i = dGT - LdET e dTY),
and 7/ = (dmu--- ,dg:),dé:)Jrl,... ,d¥"), where df,ll > ... > d¥ s the re-

arrangement of the first » terms in #/. and dgr)ﬂ > ... > d'") is the rearrange-
ment of the final n — 2r terms in #.. By the definition of =/, the following
Proposition 1 is obvious.

Proposition 1. Letw = (di, ... ,dr,dri1, .. ,dor,dors1;s - - -, dn) € NSy, where
dlZ"'zdr—l >r, dTZT—l, d1'+1 > "'ZdZTZT andd2r+1 szn?_r
Let 7 be defined as above. If 1)l is graphic, then 7 is potentially K, —e-graphic.
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For the defined sequence 7/ = ( ,(:21, . ,dg:), dgﬂal, e ,d,(f)) in Proposition

L,ifd", > >dP >1and d{),, > >d) > 1, we define
= (A7) (r) (r)
ﬂ';'—i-l — (dT+2 - ]., ey d’}":—dyzl-{—l — ]., d7’+d£,21+2, “e s ’d’(:))’

and 7, = (d,(f,_;l), e ,dé’;’q),dg;:ll), et ,d,(fﬂ)), where d,(«:zl) > > dng)
is the rearrangement of the first » — 1 terms in 7., ; and dg;:ll) >z dith
is the rearrangement of the final n — 2r terms in m..1- For k =2,3,...,rin
turn, if di:;k—l) > > dg:rk"l) > 1 and dg’;ﬁ_l) >..- 2> d,(f%‘l) > 1, the

definitions of 7., and %, are similar.

Proposition 2. [11] Let 7/ = (d7),, ... L) A ., dT) be a defined se-
quence as in Proposition 1, 1 < k <r and let 7/, be defined as above. If m) 4
is graphic, then =l is also graphic.

Lemma 1. [8] Let m = (d1,ds, ... ,dn) € NSy, m = max{dy,ds,... ,dn} and

o(r) be even. Let #* = (d},d5,...,d;) be the rearrangement sequence of m,

where m = df > d% > --- > d¥ is the rearrangement of di,ds, ... ,dn. If th2ere
m+h+1

exists an integer ny (< n) such that dj,, > h > 1 and ny > %{L_%LL],

then 7 is graphic.
We now prove the following:

Lemma 2. Letr > 4 andn > T;» + g_,r_ Let ® = (dy,...,dpr,drs1,--. ,dor,
dors1,. .. ,dn) € GS, withd, < 2r — 2 and d,, > r. If there exists an integer
te{1,2,...,[5) —1} such that drysy > 2r —2—t and dor 2 7+t —1, then  is
potentially K, , — e-graphic.

Proof. Rearrange the terms in « to get that

(Pl, oo s Pr—tsPr—td1y- v« s PryPrady oo s Prdty Prat+ly - oo spn)7
where p1 = di,...,pr—t = dret; Pr—t41 = eyl Pr = Grpt; Pry1 =
Qretils- - s Dppt = Qp; Drig+1 = dprtt1,..-,Pn = dy. For convenience, the
new sequence is still denoted by 7. Clearly, p1 2 - 2 pr 2 2r =2 —£,pry1 =
o >poprzr+t—1and 2r — 2 > poy1 2 -+ > pp = 7. By Proposition 1, it is

enough to prove that n// is graphic.
. —t—2 —~t—2 —t—2 —t—-2 (P—t—2
Since #_,_, = ,(.T_t’,:_l VoL prtY ,pg:. ¢ )},pgﬂ b ))

satisfies

W2r-2>p0 2> ol > d —(r—t-2) 2>,

@) 2r—2>p8 D > >l D > 149,

@) O =)+ @I )+ VTP — (1) < (r-2)(
D+(r-1)<E-2)[3+r-1<Z+5<n-2r,

we get that 7/ = (pfle, .. ,p,(fzt_l,p,gﬁt, ... ,p(;;),pg%l, ..., pT)) satisfies
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(4)n—r—1>p£121> ~p£2t 15

By oar—2>p, > >p) >t-1,

©)2r—22 50> 20 > 041
Hence 7//,,_; = (p"4Y, ... ,péﬁt_l),pg;itl D pY) satisfies

(7) 2r —2 > pl"H=D > > plrt =l > g

8) 2r—22pitY > > pﬁf“ V>

2

Thus, %[W] < % + % <n—2r. By Lemma 1, 7/, , is graphic, and
hence 7/ is also graphic by Proposition 2. O

3. Main results
For convenience, we first introduce the following notations. Let r = 8k + ¢,
where k > 0and 0 < ¢t < 7. Ift € {2,3,6,7}, let Fx = {8k +t,n) | k >
0 and n > 16k+2t}. If t € {0,1,4,5}, let F{ = {(8k+1t,n) | k > 0,n > 16k + 2t
and n is odd} and F}' = {(8k+t,n) | k > 0,n > 16k+2t and n is even}. Denote
B = FQUFéUFf, Ey = FﬁUFiUFé’, Es = F7UF1/UF5” and Fy = FgUFSIUFl”.

3.1 o(K,, — ke,n) for even r and n > 7r? + %7‘ —22.

Lemma 3. Letr be even, r > 4 and n > 2r. Then
Gr-2n—-Ur24+ 8- 4+2—(n—r+1), if(r,n)e€kE,
K _ > 8
o (Krer ’"e’")—{ (%r—Q)n r2—|—ér+1—( —r+1), if(r,n) € Es.

Proof. Suppose (r,n) € Ey. Consider 7 = ((n — 1)"~%,2r —3,2r —4,... ,3r —
1,(3r — 2)7~37%2), where o¥ stands for y consecutive terms, each equal to .
Then o(r) = (3r—2)n— 5 r2+3r—(n—r+1)iseven and f(7) = 3r—2. It follows
from the left-most off-diagonal matrix A of 7 that 7 = (dy,da, . .. , d,) satisfies

di=dy=---=ds, _,=n—1 Cleatly, di+dp+ - +d; <di+do+---+d;
for each ¢ = 1,2,..., f(xr). By Theorem 1, 7 € GS,. Let m = (r — 2,7 —
3., 5,(5 — 1)"=27+2), If 7 is potentially K, — re-graphic, then there exist

integerst and s, t > s > 1 and £+ s = r+ 1 such that m is potentially K, ; — se-
graphic , where K ; — se is the graph obtained from K, ; by deleting s edges
which form a matching. Hence, there are at least s terms in 71 which are greater
than or equal to r — s, a contradiction. So 7 is not potentially K, ; —re-graphic.
Thus o(K,, —re,n) > o(m)+2=(3r—2)n—Fr?+ 2r+2-(n—r+1).
Now assume (r,n) € Fy. Consider 7 = ((n — 1)"! 2r —3,2r—4,...,3r—
1,(3r— 9)n—artl, %’r— 3). Then o(r) = (3r—2)n— % u rl42r—1—(n—r+1)
is even and f (m) = 3r — 2. By the left-most off- diagonal matrix A of w that 7 =
(di,ds,...,dy,) satisfiesd; =dy = --- = d3 3=n-1, ds _, =n — 2. Clearly,
di+do+--+di<di+dg+---+d; foreachz— 1,2,... ,f( ). By Theorem 1,
7 € GSy,. Similarly, we also can prove that 7 is not potentially K, , —re-graphic.
Thus o(Ky, —re,n) 2 o(m) +2= (5r-2n—r2+ Sr+1—-(n—r+1). O
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Lemma 4. Letr be even, r >4 and n =12+ 1 —2. Then

5 11 5 , 3 1
- < A(=r - —p? e D —(p — R B
o (Kryr 3,”)—(27‘ 2)n 3" +4'r+2 (n r+1)+(2r 5" 5r)
Proof. By Theorem 3,
o(Kyrr — €,n) < 0(Kap,m) < (4r — 6)n + 8
""‘(%T-2)n+(%r—4)(r2+r—2)+8
—Gr—o9mn-Ur2 i 32— (nor 1)+ (3% - L2 - By 1 13)
<Gr_om-B2 b9 (nort1)+ (G- Ly 25, O

Lemma 5. Letr be even, r >4 andn > 12 +r—2. Let m = (dy,da,... ,dn) €
GSp withdy > 7. Ifo(n) > (5r—2n— Lr¥ + Sr+2— (n—r+1), then 7 is
potentially K, , — e-graphic.

Proof. If d, > 2r — 1, then by n > (r + 2)(r — 1) and Theorems 4 and 5, 7 is
potentially K, .-graphic, and hence = is potentially K, — e-graphic.

Now assume d, < 2r—2. Ifd,ys <2r—3—tforanyt € {1,2,...5 — 1}, then
o(m) < (n—-1)(r-1)+(2r—-2)+(2r- 4)+ +(3r~1}+(%r—2)(n—%r+3) =
Gr-2n—Hr2+3r+1—(n—r+1) < (3r-2)n— r2+%r+2—(n—'r+1) < o(m),
a contradiction. Hence there exists an integer t € {1,2,...,% — 1} such that
drys > 2r=2—t. Ifdyr < 2r -3, then o(m) < (n D(r—1)+@2r-2)r+(3r-3)(n—
r+1)=Gr—n—r?+Ir-2< Gr-n-Lr2+3r+2—(n-r+1) < o(n),
a contradiction. Hence dzr > gr - 2. By Lemma 2, m is potentially Ky, — e-
graphic. , O

Lemma 6. Letr be even, 7 > 4 and n = r2+r—2+t, where 0 < ¢ < 6r?—5—20.
Then
11 5 5

o(Kry en)<( r— 2)n——8—r +4r+2 n—-r+1)+- (6r ———20)-—7":‘,
Proof. Use induction on #. It is known from Lemma 4 that the result holds for
t = 0. Now assume that the result holds for t — 1,0 < ¢t -1 < 6r% — § — 21.
Let n=r2+r -2+t and © = (dy,da,... ,dn) € GSy with o(n) > (37— 2)n —
2r243r 42— (n—r+1)+5(6r2 — § —20) — 1rt. We only need to prove that
7 is potentially K., — e-graphic. Obviously, o(r) > (2r — 2)n — &2+ 3r+
2~ (n—-r+1).Ifd, >r, then by Lemma 5, 7 is potentially K, , — e-graphic.

If d, <7 — 1, then the residual sequence n’ of 7 satisfies o(n’) = o(7) — 2d,, >

(%?‘—2)(71—1)—£T‘2+4T—{—2 ((n—1)—r+1)+5(6r%— 5 —20)— Ir(t—1).
By the induction hypothesis, 7’ is potentially K, , — e-graphic, and hence so is
T, t

Lemma 7. Letr be even, r >4 and n > 7r? + 1r — 22. Then

O'(Kr,r-e,ﬂ)ﬁ(gr—‘Z) -%r +ir+2 (n—r+1).
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Proof. Tt is enough to prove that (x): if 7 = (di,...,dn) € GSy, and o(mw) >
(3r—2)n— Yr2 4+ 5r+ 2 — (n—r + 1), then 7 is potentially KM — e-graphic.
Apply mductlon on n. By Lemma 6, (%) holds for n = 7r? + r 22. Now
suppose that () holds for n — 1 > 7r2 + 3 lr — 22, We will prove that ()
holds for n. If d, > r, then by Lemma 5, 7r is potentially K,, — e-graphic.
Ifd, <r-1, then the residual sequence 7’ satisfies o(7n') = o(7) — 2d, >
( 2)(n— 1) r2 + r +2~((n—1)—r+1). By the induction hypothesis,
7! and T are potentlally Km — e-graphic. O

Theorem 6. Letr >4 be even, 1 <k <7 andn > Tr’+ %T‘ —22. Then

[ CGr-2n-Ur243r42-(n—r+1), if(r,n)€ Ey,
o (K —’%’")—{(gr_z) 82 i1 (nort1), Flnm)e B

Proof. Since K., — e contains K., — ke as a subgraph and K., — ke contains
K, —re as a subgraph, it is well known that (K, , —re,n) < o(Kr, —ke,n) <
o(Kyr — e,n). By Lemmas 3 and 7, for (r,n) € Ej,

5 11
o(Krr — ke,n) :(§r—2)n—§r2+%r+2— (n—r+1),
and for (r, n)eEg, ( —2n — 1r2+%r+1—(n—r+1)SU(KT,T—ke,n)S
(gr —2n— 7‘2 + 4r +2—(n—r+1). Since o(K, — ke, n) is even, we have

o(Krr ken) Gr-2n-Yr?+2r+1—-(n—r+41) for(r,n)€ Eo. O
3.2 o(Ky, — ke,n) for odd r and n > 7r? + 9r — 26.

Lemma 8. Letr be odd, 7 > 5 andn > 2r. Then

(3r —)n——r2+ Sr+ 32 —(n—r+1), if (r,n)€ Es,
o(Krr—1e,n) > {(g _g) _11 2+§T+78 (n—r+1), zf(rn)EEi

Proof. Suppose that (r n) € Es. Consider 7 = ((n — 1)7~1,2r — 3,2r —

4.3 — L Br - 3)5+E (B - By, Then o(n) = (5r—n - Lr? +
Sr—%—(n—r+1)iseven and f(n) = 3r — 3. It follows from the left most
off-diagonal matrix A of 7 that @ = (dy,ds, ... ,d,) satisfies di=dy ==
da _s=n-1, ds _p=2r-2. Clearly, d1+d2+ d; <di+da+---+d; for
eachz =1,2,... ,f(7r) By Theorem 1, m € GS,,. Let 1 = (r—2,7—=3,...,5+

%, (- 5) 5+3 (5 — %)”“2’"“). If 7 is potentially K., — re-graphic, then there

exist integers t and s, t > s > 1 and t + s = r + 1 such that 7 is potentially
K, + — se-graphic. If s < § + 1. then there are at least s terms in m; which
are greater than or equal to r — s, which is impossible. If s =t = 5 + 3 1 then
there are at least » + 1 terms in w; which are greater than or equal to f — %,
which is also impossible . Thus, 7 is not potentlally K, ., — re-graphic. Hence
o(Krr —re,n) > ()+2—(r—g)n~—1—1r2+ Sr+ - (n-r+1).

Now suppose (r,n) € E4. Consider 7 = ((n — )’"“1 U —3,2r—4,..., gr

LG3r—3)5+%, (3r - 5)»?,3r — I). Then o(r) = (7 - g)n— Br? 45—
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2—(n—r+1)iseven and f(r) = 2r — 3. By the left-most off-diagonal matrix

Aofvr,'/r-(dl,dz, ,dy,) satisfies d; ~d2~ -—da -1 =n -1, dar___g =

2d3 3‘”2’:‘—2 Clearly, dy + dg + -+ +d1§d1+d2+ -+ d; for
each i = 1 2 .., f(m). By Theorem 1, # € GS,. Similarly, we can prove that
7 is not potentially K, - re-graphic. Thus, ¢(K,, — re,n) > o{x) + 2 =
Gr-Sm—-Yr24+8r+ T —(n—r+1). O

Lemma 9. Letr beodd, r>5andn=r>+r—2. Then

5 b 11 5 15
a(Kr,r—e)S(-z-r—E)n—— 2+ +—-—(n r+1)+

3 = (6r® +2r% —32r +24).

4

Proof. By Theorem 3,
a(KM e,n) < O'(Kgn,«,n) <(4r-6n+8
= (r—fn+(Er - D +r-2)+8

=(%r—g)n—nr2+2r+ (n—r+1)+(%§"3+%r2—gr+%)
=(3r-3)n- 112+2r+ (n—r+1)+4(6r +3r2_36r+ %)
=(%r-g)n 1"2+2r+ —(n=-r+1)+ (6r + (35 r2+ 5) — 367 +44)
g(gr-g)n—n r 43 r+15 (n— r+1)+ (6% +2r? —327‘+24) O

Lemma 10. Letr > 5 be odd,an +7 -2 and 7 = (d1,dg, ... ,dn) € GSy
withdy, > 7. Ifo(n) > Br—Sn—2r2 4+ 8r+ ¥ —(n—r+1), then n is

potentially K, , — e-graphic.

potentially K, .-graphic, and hence # is potentially KM — e-graphic. Assume
dr < 2r -2 Ifdyy <2r—3—tforanyt € {1,2,... 2}, then 0'(71') <
(1= 1) = 1) @r =2) + @r 444 (G~ —)+(3r— Dn—ir+3) <
r-Sm-Yr248r+ ¥ (n-r+1)< a(7r), a contradiction. Hence there
exists t € {1, 2, P %} such that d,.H > 2r — 2 — t. There are two cases.

C’ase 1. There exists t € {1,2,...,5 — 2} such that dpyy > 2r —2—1¢. If
dar < 2?‘ -5 then a(7r) <{(n-1)(r-— 1) + (2r - r+Er-Dn-2r+1)=
Gr-gm-r2+dr -2 < (Gr—fm-Url4 Sr+ L —(n—r+1) <om),
a contradlctlon. Hence d2,» > %r — g By Lemma 2, 7 is potentially K., — e-
graphic.

Proof. If d, > 2r — 1, then by n > (r + 2)(r — 1) and Theorems 4 and 5, 7 is

Case 2. driy <2r—3—tforanyte {1,2,...,5 }andd_r_ >8r-3
U dyr < Twi,theno‘(w)<(n—1)(r-1)+(2r~2)+(29~~—4)+ +(% -
D+ Gr-DG+D+Gr-Do-2r+1) = @r-Po-risfr-f <
(§r—3n - 11 P+ Sr+ L —(n-r+1) <on),a contradiction. Hence

dor > 3?‘ - — By Lemma 2 7 is potentially K,.r e-graphic, [
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Lemma 11. Letr be odd, r > 5 and n = r?+r—2+t, where0 <t < 6r248r—24.
Then

5 5§ 11 5 15 1 1

K, — < (=r—Z)n—"=r? ——(n—r —6 8r 24————t.

o(Krr—e,n) < (Gr—gin——oritort—o—(n—r+i)+ (6r?+8r—24)——
Proof. Use induction on t. It follows from Lemma 9 that Lemma 11 holds for t =
0. Now suppose that Lemma 11 holds for 0 <¢—-1 < 6r2+8r—25. We will prove
that Lemma 11 holds fort Letn=r +r—2+t, and w = (dy,da, ... ,dn) € GSn
witho(m) > Sr—3n—-r2 4 3r+ 28— (n— r+1)+ 2L (672 +8r —24) —
Clearly, o(m) > (3r — %)n 11 r? + T+E—(n—r+1) If d, >, then by
Lemma 10, 7 is potentially KM e—graphlc If d, < r — 1, then the res1dual

sequence 7' satisfies o(n’) = o(m) — 2d, > (‘;’r - Hn-1) - Lr2 4+ 3r +

B ((n—1)—r+1)+ =7 (6r* + 8r — 24) — r=l(¢t - 1). By the 1nduct10n
hypothesis, 7’ and 7 are potentially K,, — e-graphic. Thus, o(Kr, —€,n) <
Cr—Sn -2 3r 4 35 (n—r 4 1)+ 27 (6r2 + 87 — 24) — I7Mt O

Lemma 12. Letr be odd, r > 5 and n > 7r2 4+ 9r — 26. Then

n, 5 15
+

5 5
U(K’"W_e’”)f(y—‘é)" 3 +—8——(n—r+1).

Proof. Tt is enough to prove that (x): if # = (di1,d2,...,dn) € GS, with
o(n) > (3r—Sn—r2 4+ 5r4 22 — (n—r+1), then 7 is potentially K, —e-
graphic. Apply induction on n. By Lemma 11, (%) holds for n = 7r? + 9r — 26.
Now suppose that (x) holds for n — 1 > 7r? + 9r — 26. We will prove that (*)
holds for n. If d, > r, then by Lemma 10, 7 is potentially K, — e-graphic If
dn < r—1, then residual sequence 7’ satisfies o(n') = o(m) —2dy, > (37— 5)(n—
1) — Ur2 4+ 5r 4+ 18 — ((n —1) — r + 1). By the induction hypothesis, 7’ and =
are potentially K, , — e-graphic. O

Theorem 7. Letr > 5 be odd, 1 < k <randn>7r?+9r —26. Then

a(KT,r_ke,n):{ (§r—3n—1 r? 4 r+;35 (n—r+1), if (rn)e B,

ir_g)n_lgmgw (n—r+1), i (r,n)€ Ea.

Proof. By Lemmas 8 and 12, o(K,, —ke,n) = (3r—3)n— 24 5r+ 2 —(n—
r+1) for (r,n) € E3 and( r—g)n—grz—% r+I—(n—r+1) < o(Kpr k‘e n) <
(Br—3Sm—Pri+3r+ & I — (n—r+1) for (n,r) € E4. Since (K, — ke, n)
is even, we have J(Km - ke n)=0Gr-Sm -2+ r+I—(n—r+1)for

(7‘, n) € Fy. O
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