References
- G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M. J. Nikmehr, and F. Shaveisi, The classification of the annihilating-ideal graphs of commutative rings, Algebra Colloquium, (to appear).
- S. Akbari and A. Mohammadian, On zero-divisor graphs of finite rings, J. Algebra 314 (2007), no. 1, 168-184. https://doi.org/10.1016/j.jalgebra.2007.02.051
- D. F. Anderson, M. C. Axtell, and J. A. Stickles, Jr., Zero-divisor graphs in commutative rings, in Commutative Algebra, Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), 23-45, Springer-Verlag, New York, 2011.
- D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring, II, in: Lecture Notes in Pure and Appl. Math., vol. 220, pp. 61-72, Dekker, New York, 2001.
- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
- D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), no. 2, 543-550. https://doi.org/10.1016/j.jpaa.2006.10.007
- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
- M. Baziar, E. Momtahan, and S. Safaeeyan, A zero-divisor graph for modules with respect to their (first) dual, J. Algebra Appl. 12 (2013), no. 2, 1250151, 11 pp. https://doi.org/10.1142/S0219498812501514
- M. Baziar, E. Momtahan, and S. Safaeeyan, A zero-divisor graph for modules with respect to elements of their (first) dual, submitted to Bull. of IMS.
- I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
- M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra 4 (2012), no. 2, 175-197. https://doi.org/10.1216/JCA-2012-4-2-175
- M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), no. 4, 727-739. https://doi.org/10.1142/S0219498811004896
- M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), no. 4, 740-753.
- D. Lu and T. Wu, On bipartite zero-divisor graphs, Discrete Math. 309 (2009), no. 4, 755-762. https://doi.org/10.1016/j.disc.2008.01.044
- J. Dauns and L. Fuchs, Infinite Goldie dimensions, J. Algebra 115 (1988), no. 2, 297-302. https://doi.org/10.1016/0021-8693(88)90257-8
- F. DeMeyer and K. Schneider, Automorphisms and zero-divisor graphs of commutative rings, Internat. J. Commutative Rings 1 (2002), no. 3, 93-106.
- S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7, 3533-3558. https://doi.org/10.1081/AGB-120004502
- S. P. Redmond, The zero-divisor graph of a non-commutative ring, Internat. J. Commutative Rings 1 (2002), no. 4, 203-211.
- D. B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2001.
- R. Wisbauer, Foundations of Modules and Ring Theory, Gordon and Breach Reading 1991.
Cited by
- A conception of zero-divisor graph for categories of modules vol.15, pp.01, 2016, https://doi.org/10.1142/S0219498816500122
- Zero-divisor graphs for modules over integral domains vol.16, pp.05, 2017, https://doi.org/10.1142/S0219498817500876
- ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS vol.53, pp.5, 2016, https://doi.org/10.4134/JKMS.j150457