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L(4, 3, 2, 1)-PATH COLORING OF CERTAIN CLASSES OF

GRAPHS

DHANYASHREE AND K.N. MEERA∗

Abstract. An L(p1, p2, p3, . . . , pm)-labeling of a graph G is an assign-
ment of non-negative integers, called as labels, to the vertices such that

the vertices at distance i should have at least pi as their label difference.

If p1 = 4, p2 = 3, p3 = 2, p4 = 1, then it is called a L(4, 3, 2, 1)-labeling
which is widely studied in the literature. A L(4, 3, 2, 1)-path coloring of

graphs, is a labeling g : V (G) → Z+ such that there exists at least one

path P between every pair of vertices in which the labeling restricted to
this path is a L(4, 3, 2, 1)-labeling. This concept was defined and results

for some simple graphs were obtained by the same authors in an earlier ar-

ticle. In this article, we study the concept of L(4, 3, 2, 1)-path coloring for
complete bipartite graphs, 2-edge connected split graph, Cartesian product

and join of two graphs and prove an existence theorem for the same.
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1. Introduction

All graphs studied in this paper are simple, connected, undirected and finite.
The standard graph theory terminologies are considered from [1]. The Frequency
Assignment Problem (FAP) has a wide range of significance as there is a exten-
sive growth in wireless communication networks. To avoid the interference in
FAP, the radio stations or the transmitters are to be assigned with frequencies
which differ by certain minimum value. But this would mean a requirement
of a huge frequency spectrum. Optimal use of frequency spectrum in order to
minimize interference is the challenging aspect of the problem. In 1980, Hale
et al., turned this FAP as a graph labeling problem which is defined as follows:
An L(p1, p2, ....., pm)- labeling of a graph G, is labeling of vertices with non
negative integers, called labels, such that the vertices at distance i are assigned
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with the labels whose difference is at least pi [2, 3]. The distance two labeling
or L(2, 1)-labeling is the most explored one in the literature [4, 5, 6, 7, 8]. In
this labeling, adjacent vertices are assigned labels that differ by at least two and
vertices at distance two assigned labels that differ by at least one. The largest
integer used in any such labeling was called as the span of the labeling. The
least value of span taken over all such labelings was called as L(2, 1)- number
or λ- number of G, denoted by λ(G).

Practically, interference can occur at more than two levels also. Jean Clipper-
ton et al., studied L(3, 2, 1)-labeling problems and defined L(3, 2, 1)-labeling
as an assignment of non negative integers to each vertex of G such that the ver-
tices at distance 1, 2, 3 are labelled with integers that differ by at least 3, 2, 1
respectively [9]. Later, Soumen Atta et al., defined the L(4, 3, 2, 1)-labeling as
an assignment of non negative integers to each vertex of G such that the vertices
at distance 1, 2, 3, 4 are labelled with a difference of at least 4, 3, 2, 1 respec-
tively. Analogous to the L(2, 1)- number, the L(3, 2, 1)-labeling number and
L(4, 3, 2, 1)-labeling number of G respectively, denoted by k(G) were defined.
Minimizing the span, in terms of FAP meant the optimal use of frequency spec-
trum with minimal interference. In [10], k(G) for paths, cycles, complete graphs
and complete bipartite graphs was obtained. In [11], R. Sweetly and J. Paulraj
Joseph obtained an upper bound for k(G) in terms of maximum degree of G. Sk
Amanathulla et al., discussed the L(3, 2, 1) and L(4, 3, 2, 1)-labeling problem
on interval graphs [12]. Variations of the FAP for higher levels of interference
has been studied in [13, 14, 15, 16].

According to Ruxandra Marinescu-Ghemeci [17], in order to have a safe com-
munication in security networks, existence of a path satisfying L(2, 1)- labeling
condition is crucial. Restricting the interference level to two, the author studied
L(2, 1)-path coloring in [17]. This definition seeks a path between every pair
of vertices in the graph G such that, vertices at distance 1 and 2 on that path
should be assigned labels that differ by at least 2 and 1 respectively. Again
the highest integer used in such a labeling was called span and the minimum
span over all such labelings was called 2-radio connection number, denoted by
λc(G). A graph G was called 2-radio connected if there was a L(2, 1)-path
between every pair of vertices. Upper and lower bound for λc(G) where G is
connected graph with n ≥ 5 vertices has been obtained in [17]. λc(G) for graphs
having Hamiltonian path, complete graphs, cycles, complete bipartite graphs,
2-edge connected split graphs, graph obtained by Cartesian product or join of
two graphs were also addressed in this paper.

Applying the above idea of path coloring to the L(3, 2, 1) labeling we con-
ceived the idea of L(3, 2, 1)-path coloring of graph G in [18]. Analogous to
2-connection number of G, we defined 3-connection number, kc(G) in [18] and
completely determined kc(G) for G ≃ Cn or Kn, Km,n, 2-edge connected Split
graph, Cartesian product of two graphs, Join of two graphs. In our earlier work
[19], we extended this concept to four levels by defining L(4, 3, 2, 1)-path col-
oring of graphs as follows :



L(4, 3, 2, 1)-path Coloring of Certain Classes of Graphs 513

A L(4, 3, 2, 1)-path coloring of graphs, is a labeling g : V (G) → Z+ such that
there exists at least one path P between every pair of vertices in which the label-
ing restricted to this path is a L(4, 3, 2, 1)-labeling. This means that between
every pair of vertices in the graph there should be at least one path such that,
vertices on that path at distances 1, 2, 3 and 4 should be assigned labels that
differ by at least 4, 3, 2 and 1 respectively. The maximum label given to any
vertex of G under such a labeling g was called as span of g. The minimum value
of span of g taken over all such labelings g was called L(4, 3, 2, 1)-connection
number or 4-connection number of G, again denoted by kc(G). The value of
kc(G) for graphs containing Hamiltonian path was obtained in [19]. In this pa-
per, we find kc(G) of complete bipartite graphs, 2-edge connected split graph,
Cartesian product of graphs, join of graphs and also prove an existence theorem.
Some Remarks:

Remark 1.1. If 1 is not assigned to any vertex in a L(4, 3, 2, 1)-path coloring of
a graph G, then we can get another L(4, 3, 2, 1)-path coloring of G by reducing
the label of every vertex by 1. As a result of which the span is decreased by 1.
Therefore, in a minimal L(4, 3, 2, 1)-path coloring of G, 1 must be assigned to
some vertex of G.

Remark 1.2. For a graph G, let g : V (G) → Z+ be a L(4, 3, 2, 1)-path
coloring of G with k = span(g). Then the complementary coloring of g, denoted
by g′, defined as g′(v) = k+1−g(v), for every v ∈ V (G) is also an L(4, 3, 2, 1)-
path coloring of G with span k.

Remark 1.3. Let T be any tree. Then, kc(T ) = k(T ). The definition of
L(4, 3, 2, 1)-labeling and L(4, 3, 2, 1)-path coloring coincide as there is a
unique path between every pair of vertices in T .

Remark 1.4. An optimal L(4, 3, 2, 1)-path coloring of G is a L(4, 3, 2, 1)-
path coloring of a graph G with span(g) = kc(G) where g : V (G) → Z+.

We will be using the following notations in this paper:

(1) Let P be a path in G and u, v be the vertices in P , the sub path of P

from u to v will be denoted by u
P
− v.

(2) G[C] is the subgraph induced by C in G where C is a subset of the
vertex set of G.

2. Preliminary Results

In this section we discuss some preliminary results. At first we recall the
following two Theorems for ready reference from [11].
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Theorem 2.1. For n ≥ 2, Pn be a path, then k(Pn) =



5, if n = 2
8, if n = 3
9, if n = 4
11, if 5 ≤ n ≤ 7
12, if 8 ≤ n ≤ 12
13, if n ≥ 13

Theorem 2.2. For a star graph k(K1,n) = 3n+ 2.

Proposition 2.3. Let G be a connected graph with n ≥ 2 vertices.

(1) 5 ≤ kc(Pdiam(G)+1) ≤ kc(Pr) ≤ kc(G) for r ≥ diam(G) + 1.

Proof. Let g be an optimal L(4, 3, 2, 1)-path coloring of G. Let u and
v be vertices such that d(u, v) = diam(G). Then any L(4, 3, 2, 1)-path
Pr between them has at least diam(G) + 1 vertices and contains a sub
path isomorphic to Pdiam(G)+1. From Theorem 2.1 and Remark 1.3 we
have the result.

□

(2) If H is any induced subgraph of G containing a Hamiltonian path with
m<n vertices, kc(H) ≤ kc(G) ≤ kc(H) + 4(n−m)

Proof. Since H is an induced subgraph of G, kc(H) ≤ kc(G).
The inequality kc(G) ≤ kc(H) + 4(n − m) holds by the definition of
L(4, 3, 2, 1)-path coloring of graphs. □

(3) If H is a spanning connected subgraph of G, then kc(G) ≤ kc(H).

Proof. As H contains all the vertices of G, any L(4, 3, 2, 1)-path col-
oring of H is also a L(4, 3, 2, 1)-path coloring of G, hence the result.

□

The following results are proved by us in [19]. We recall them here for ready
reference.

Theorem 2.4. For any connected graph G with n vertices,

(1) kc(G) = 5 if n = 2
(2) kc(G) = 8 if n = 3
(3) kc(G) = 9 if n = 4 and G ̸≃ K1,3

Theorem 2.5. Let G be a connected graph with 5 ≤ n ≤ 7 vertices and
containing Hamiltonian path. Then kc(G) = 11.

Theorem 2.6. Let G be a connected graph with n vertices. Then

(1) kc(G) = 12 if 8 ≤ n ≤ 12 and G contains a Hamiltonian path.
(2) kc(G) ≥ 13, otherwise
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3. Main results

In this section, we focus on graphs that do not contain a Hamiltonian path
such as Complete bipartite graph. Also we prove the result for 2-edge connected
split graph.

Proposition 3.1. Let 1 ≤ m ≤ n. Then

kc(Km,n) =



3n+ 2, if m = 1

n+ 8, if m = 2, n ≥ 6

9, if m,n = 2

11, if m = 2, n = 3, m = n = 3 and m = 3, n = 4

12, if 4 ≤ m = n ≤ 6, m = 4, n = 5 and m = 5, n = 6

13, otherwise

Proof. Case 1: By Theorem 2.2 and Remark 1.3, k(K1,n) = kc(K1,n) = 3n+2.
Case 2: For m = 2, n ≥ 6 , let V (K2,n) = {x1, x2} ∪ {y1, y2, y3, .. . . , yn}.

Define g as follows: g(v) =



1, if v = x1

4, if v = x2

6, if v = y1

8, if v = y2

9, if v = y3

j + 8, if v = yj , 4 ≤ j ≤ n

It can be easily seen that between each pair of vertices of K2,n there exists a
L(4, 3, 2, 1)-path coloring as follows:

(1) The path from x1 to x2 is [x1, yj , x2] where 4 ≤ j ≤ n.
(2) The path from x1 to yj , 1 ≤ j ≤ n is [x1, yj ].
(3) The path from x2 to yj , 2 ≤ j ≤ n is [x2, yj ].
(4) The path from x2 to y1 is [x2, yj , x1, y1] where 3 ≤ j ≤ n.
(5) The path from y1 to yj , 3 ≤ j ≤ n is [y1, x1, yj ].
(6) The path from y1 to y2 is [y1, x1, yj , x2, y2] where 4 ≤ j ≤ n.
(7) The path from y2 to y3 is [y2, x1, yj , x2, y3] where 4 ≤ j ≤ n.
(8) The path from y2 to yj , 4 ≤ j ≤ n is [y2, x1, yj ].
(9) The path from y3 to yj , 4 ≤ i ≤ n is [y3, x1, yj ].
(10) The path from yi to yj , 4 ≤ i<j ≤ n, is [yi, x2, y3, x1, yj ].

It remains to show that kc(K2,n) ≮ n+ 8.
Suppose kc(K2,n) = n+7, there exists two vertices between xi and xj such that
g(xi) = 1 and g(xj) = n + 7 or g(xi) = 1 and g(yj) = n + 7 or g(yi) = 1 and
g(yj) = n+ 7.
Subcase 2.1: Let g(x1) = 1 and g(x2) = n+ 7.
Then g(y1) = 5 and g(y2) = 9 implies that g(y3) = 4, g(y4) = 8 and g(yi) =
i + 5, 5 ≤ i ≤ n − 1. As g(x2) = n + 7, let g(yn) = n + 7 + 4 = n + 11 or
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g(yn) = n+ 7− 4 = n+ 3.
If n = 1, then g(x2) = 8 which is not possible as g(y4) = 8.
If n = 2 then g(x2) = 9, not possible as g(y2) = 9.
If n = 3 then g(x2) = 10, as g(y2) = 9, there is only a path of length 3 from x2

to y2, so the labeling condition fails here.
If n = 4 then g(x2) = 11. Since g(yi) = i+ 5, for i = 5, g(yi) = 10. So, there is
no path from x2 to yi.
Hence for all n ≥ 5, similar contradiction occurs. Therefore, g(x2) ̸= n+ 7.
Similar contradiction appears if x1 and x2 are interchanged.
Subcase 2.2: Let g(x1) = 1 and g(y1) = n+ 7.
Then, g(x2) = 4 and g(y2) = 6 implies that g(y3) = 8, g(y4) = 9 and g(yi) = i+5,
5 ≤ i ≤ n− 1.
Since yn is at distance two from y1, g(yn) = n + 7 + 3 = n + 10 or g(yn) =
n + 7 − 3 = n + 4 which implies that there is no path from yn to yi, a similar
contradiction occurs as in Subcase 2.1. Again a similar contradiction occurs in
the case g(yi) = 1 and g(yj) = n+ 7.
Thus, it is not possible to have a L(4, 3, 2, 1)-path coloring of K2,n, n ≥ 6 with
n+ 7 or fewer colors. ∴ kc(K2,n) = n+ 8.
A L(4, 3, 2, 1)-path coloring of m = 2, n = 6 is shown in Figure 1.
Case 3: For n = m = 2, result holds by the Theorem 2.4, point 3.

4

1

8

6

9

12

13

14

Figure 1. L(4, 3, 2, 1)-path coloring of K2,6

Case 4: In this case G is a graph with 5 ≤ m+n ≤ 7 and contains a Hamiltonian
path. Then by Theorem 2.5, kc(Km,n) = 11.
Case 5: In this case G is a graph with 8 ≤ n ≤ 12 and contains a Hamiltonian
path. Then, by Theorem 2.6, point 1, kc(Km,n) = 12.
Case 6: From the Theorem 2.6, point 2, kc(G) ≥ 13. By the labeling shown in
Figures 2 and 3, kc(K2,4) = kc(K2,5) = 13.



L(4, 3, 2, 1)-path Coloring of Certain Classes of Graphs 517

11

1

3

6

9

13

Figure 2. L(4, 3, 2, 1)-path coloring of K2,4

4

1

8

6

9

12

13

Figure 3. L(4, 3, 2, 1)-path coloring of K2,5

For all otherm,n vertices, let V (Km,n) = {x1, x2, x3, . . . xm}∪{y1, y2, y3, .. . . , yn}
where 3 ≤ m <n such that n ≥ m+ 2.

Now, define the labelling g as follows: g(v) =



1, if v = x1

11, if v = x2

6, if v = y1

3, if v = y2

8, if v = xi, 3 ≤ i ≤ m

13, if v = yj , 3 ≤ j ≤ n
It can be easily seen that between each pair of vertices of Km,n there exists

a L(4, 3, 2, 1)-path coloring as follows:

(1) The path from x1 to x2 is [x1, y1, x2].
(2) The path from x1 to xi, ∀i, 3 ≤ i ≤ m, is [x1, yi, xi].
(3) The path from x2 to xi ∀i, 3 ≤ i ≤ m is [x2, y2, xi].
(4) The path from xi to xj , 3 ≤ i<j ≤ n, is [xi, y2, x2, y1, x1, yj , xj ].
(5) The path from y1 to y2 is [y1, x2, y2].
(6) The path from y2 to yi, ∀i, 3 ≤ i ≤ n is [y2, x2, y1, x1, yi].
(7) The path from y1 to yi, ∀i, 3 ≤ i ≤ m, is [y1, x2, y2, xi, yi].
(8) The path from yi to yj , 3 ≤ i<j ≤ n, is [yi, x1, y1, x2, y2, xi, yj ].
(9) The path from xi to yj , 3 ≤ i ≤ m, 3 ≤ j ≤ n is [xi, yj ].
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A L(4, 3, 2, 1)-path coloring of m = 4, n = 6 is shown in the Figure 4 below.

x4 8

x3 8

x2 11

x1 1

y5 13

y3 13

y2 3

y1 6

y6 13

y4 13

Figure 4. L(4, 3, 2, 1)-path coloring of K4,6

□

Theorem 3.2. For 2-edge connected split graph G with n ≥ 13, kc(G) = 13.

Proof. Let G be a 2-edge connected split graph with V (G) as vertex set, E(G)
as a edge set. Then V (G) can be partitioned into a subset C such that G[C]
is a clique with at least 11 vertices and an independent set S with at least two
vertices.
By Theorem 2.6, point 2, kc(G) ≥ 13. Now, it is enough to prove for equality
that there exists an L(4, 3, 2, 1)-path with 13 colors. Define a labeling g as
follows:
Step 1:Label vertices of C arbitrarily with {1, 6, 8} such that each label is
used at least once and the labels {3, 11, 13} are used exactly once.

Step 2: Let s ∈ S and gs and g
′

s be two neighbors of s in C. Then we say s is

of type 1 if c(gs) ̸= c(g
′

s),

of type 2 if c(gs) = c(g
′

s) = 1,

of type 3 if c(gs) = c(g
′

s) = 6,

of type 4 if c(gs) = c(g
′

s) = 8
Label s as follows:
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c(s) =



{1, 6, 11, 3, 8, 13} − {c(gs), c(g
′
s)} ifsis of type 1 and ifc(gs) = 1, c(g′

s) = 6thenc(s) ̸= 3

{1, 6, 11, 3, 8, 13} − {c(gs), c(g
′
s)} ifsis of type 1 and ifc(gs) = 6, c(g′

s) = 11thenc(s) ̸= 8

{1, 6, 11, 3, 8, 13} − {c(gs), c(g
′
s)} ifsis of type 1 and ifc(gs) = 8, c(g′

s) = 3thenc(s) ̸= 6

{1, 6, 11, 3, 8, 13} − {c(gs), c(g
′
s)} ifsis of type 1 and ifc(gs) = 8, c(g′

s) = 13thenc(s) ̸= 11

9, ifsis of type 2

10, ifsis of type 3

4 ifsis of type 4

Now, to prove that c is an L(4, 3, 2, 1)-path coloring, find an L(4, 3, 2, 1)-
path P between each pair (x, y) of distinct vertices of G. So, we consider the
following cases.
Case 1: x, y ∈ C. If c(x) ̸= c(y) then either e = xy is a L(4, 3, 2, 1)-

path between x and y or there exist p ∈ C such that x
P
− y = [x, p, y] is the

L(4, 3, 2, 1)-path between x and y or there exist p ∈ C such that x
P
−y = [p, x, y]

is the L(4, 3, 2, 1)-path between x and y or there exist p, q ∈ C such that

x
P
− y = [x, p, y, q] is the L(4, 3, 2, 1)-path between x and y or there exists

p, q ∈ C such that x
P
− y = [p, x, q, y] is the L(4, 3, 2, 1)-path between x and

y where g(p), g(q) ∈ {1, 6, 11, 3, 8, 13} − {c(x), c(y)}.
If c(x) = c(y) = 1, then there is a L(4, 3, 2, 1)-path from x to y such that

x
P
− y = {1, 6, 11, 3, 8, 13, 1}.

If c(x) = c(y) = 6, then there is a L(4, 3, 2, 1)-path from x to y such that

x
P
− y = {6, 11, 3, 8, 13, 1, 6}.

If c(x) = c(y) = 8, then there is a L(4, 3, 2, 1)-path from x to y such that

x
P
− y = {8, 13, 1, 6, 11, 3, 8}.

Case 2: x ∈ S, y ∈ C.
Case 2.1: x is of type 2, 3 or 4. Choose gx ∈ C. By case 1, if x is of type 2
or 4, then we can find an L(4, 3, 2, 1)- path Q from gx to y. Let P = [x, Q]
be the path obtained by adding x at the beginning of Q. If x is of type 3, then
we can find an L(4, 3, 2, 1)- path Q from gx to y such that P = [Q, x]. Since
c(x) /∈ {1, 6, 11, 3, 8, 13}, P is an L(4, 3, 2, 1)-path.
Case 2.2: x is of type 1. Then there exists gx ∈ C with c(gx) ̸= c(y).
If c(x) ̸= c(y), consider P = [x, gx, y] is the L(4, 3, 2, 1)-path between
x and y or P = [gx, x, y] is the L(4, 3, 2, 1)-path between x and y or
consider P = [x, gx, y, gy] is the L(4, 3, 2, 1)-path between x and y or
P = [gx, x, gy, y] is the L(4, 3, 2, 1)-path between x and y where g(gx), g(gy) ∈
{1, 6, 11, 3, 8, 13} − {c(x), c(y)}.
If c(x) = c(y) = 1 or c(x) = c(y) = 8, choose x1, x2, x3, x4, x5 in C unique col-
ors from {1, 6, 11, 3, 8, 13}-{c(gx), c(y)} and let P = [x , gx, x1, x2, x3, x4, x5,
y].
If c(x) = c(y) = 6, choose x1, x2, x3, x4, x5 in C unique colors from
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{1, 6, 11, 3, 8, 13}-{c(gx), c(y)} and let P = [gx, x1, x2, x3, x4, x5, y, x].
Case 3: x, y ∈ S.
Case 3.1: Both x and y are of type 2, 3 or 4. Choose gx ∈ C and gy ∈ C
with gx ̸= gy and x is adjacent to both gx and gy. Let Q be a L(4, 3, 2, 1)-
path in C from gx to gy (exists from case 1). If x and y are of type 2 or 4,
then P = [x, Q, y] is a L(4, 3, 2, 1)-path. If x and y are of type 3, then
P = [y, Q, x] is a L(4, 3, 2, 1)-path.
Case 3.2: x is of type 2,3 or 4 and y is of type 1. Let gx ∈ C. By case 2
there is Q a L(4, 3, 2, 1)-path from gx to y, having only vertices of colors
{1, 6, 11, 3, 8, 13}. Consider P = [x, Q].
Case 3.3: Both x and y are of type 1. We then have {c(x)} ∪ c(gx) =
{c(y)} ∪ c(gy) = {1, 6, 11, 3, 8, 13}. If c(x) = c(y), choose gm, gn, go, gp ∈ C
such that c(gm) ̸= c(gn) ̸= c(go) ̸= c(gp). Then |c(gi)− c(gj)| ≥ 4 , m ≤ i<j ≤ p
and P = [x, gm, gn, go, gp, gy, y] is a L(4, 3, 2, 1)-path.
If c(x) ̸= c(y), let gx ∈ C of color c(y) and gy ∈ C of color c(x). Let z1, z2, z3,
z4 be a vertices from Q of color {1, 6, 11, 3, 8, 13} − {c(x), c(y)}. Consider
P = [x, gx, z1, z2, z3, z4, gy, y].
In all cases, it is easily proved that path P is a L(4, 3, 2, 1)-path.
Hence c is a L(4, 3, 2, 1)-path coloring. □

4. Graph Operation

Cartesian Product of two graphs G and H, G × H is the graph with
V (G)× V (H) as the disjoint vertex set and E(G×H) as the edge set such that

{((u, v), (u′
, v

′
))|(u = u

′
and vv

′ ∈ E(H))or(uu
′ ∈ E(G) and v = v

′
)}.

Theorem 4.1. Let G and H be the two connected non trivial graphs.

Then kc(G×H) =


9, if |V (G)| = |V (H)| = 2
11, if 5 ≤ |V (G)| + |V (H)| ≤ 7 where G and H contains Hamiltonian path
12, if 8 ≤ |V (G)| + |V (H)| ≤ 12 where G and H contains Hamiltonian path
13, if |V1| ≥ 13 and |V2| ≥ 13 where G and H contains Hamiltonian path

Proof. Case 1: This case holds by Theorem 2.4, point 3.
Case 2: Since Cartesian product of two graphs containing Hamiltonian path is
also a graph that contains a Hamiltonian path, by Theorem 2.5, result holds.
Case 3: Similar to Case 2, result holds by Theorem 2.6, point 1.
Case 4: For all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n and i ≤ j, define g as follows:

If i ≡ 1 (mod 2), then g(ui, vj) =



1, if j ≡ 1 (mod 6)
6, if j ≡ 2 (mod 6)
11, if j ≡ 3 (mod 6)
3, if j ≡ 4 (mod 6)
8, if j ≡ 5 (mod 6)
13, if j ≡ 0 (mod 6)

If i ≡ 0 (mod 2),
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then g(ui, vj) =



13, if j ≡ 1 (mod 6)
8, if j ≡ 2 (mod 6)
3, if j ≡ 3 (mod 6)
11, if j ≡ 4 (mod 6)
6, if j ≡ 5 (mod 6)
1, if j ≡ 0 (mod 6)

By the Theorem 2.6, point 2, kc(G ×H) ≥ 13. By the labelling defined above
kc(G × H) ≤ 13. It can be easily seen that between each pair of vertices of G
there is a L(4, 3, 2, 1)-path coloring as follows:

(1) For i ≡ 1 (mod 2), the path from uivj−uivp , 1 ≤ p ≤ n is [uivj , uivj+1,
uivj+2, . . . , uivp].
Also, in i ≡ 0 (mod 2) case, the same path [uivj , uivj+1, uivj+2, . . . , uivp]
, 1 ≤ p ≤ n holds

(2) For i ≡ 1 (mod 2), q ≡ 0 (mod 2), the path from uivj − uqvr is
[uivn, uivn−1, uivn−2, uiv1, uqv1, uqv2, . . . , uqvr].

(3) For i ≡ 1 (mod 2), the path from uivj − uqvr is obtained by combining
the paths from 1 and 2.
Same path occurs in the case q ≡ 1 (mod 2)

□

Join of two graphs G and H, G∨H, is the graph with V (G)∪V (H) as the
disjoint vertex set and E(G∨H)= E(G)∪E(H)∪{uv|u ∈ V (G) and v ∈ V (H)
} as the edge set.

Theorem 4.2. If G and H are the two connected non trivial graphs,

then kc(G∨H) =


9, if |V (G)| = |V (H)| = 2
11, if 5 ≤ |V (G)| + |V (H)| ≤ 7 where G and H contains Hamiltonian path
12, if 8 ≤ |V (G)| + |V (H)| ≤ 12 where G and H contains Hamiltonian path
13, otherwise

Proof. If |V (G)| = |V (H)| = 2 then G and H are isomorphic to P2, hence
kc(G ∨H)=kc(K4) = 9, by Theorem 2.4, point 3.
If G and H contains a Hamiltonian path, then the G∨H also contains a Hamil-
tonian path in it where 5 ≤ |V (G)|+ |V (H)| ≤ 7 and 8 ≤ |V (G)|+ |V (H)| ≤ 12.
Thus, the result holds from Theorem 2.5 and Theorem 2.6, point 1. Thus,
kc(G ∨H) = 11 for 5 ≤ n ≤ 7 and kc(G ∨H) = 12 for 8 ≤ n ≤ 12 respectively.
Otherwise, G ∨ H contains a spanning connected graph isomorphic to Km,n

where n = |V (G)| and m = |V (H)|. By Theorem 2.6, point 2 we have 13 ≤
kc(G ∨H) ≤ kc(Km,n) = 13. □

5. Existence Theorem

In the previous sections we have seen that kc(G) ≥ 5 and kc(G) ̸= 6, 7, 10 for
any graph G. In this section we answer the reverse question i. e, ”Given any
positive integer, does there always exist a graph G, whose kc(G) is the given
integer?” The following Theorem 5.1 answers this question in the affirmative.
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Theorem 5.1. For any integer a ≥ 13, there always exists a graph G with
kc(G) = a.

Proof. Construct a graph G with vertex set, V (G) = {u, v, u1, u2, . . . , u6} ∪
{v1, v2, . . . , vn} and edge set, E(G) = {uvi, vvi|1 ≤ i ≤ n} ∪ {v1u1, uiui+1|1 ≤
i ≤ 5} with n = a − 8 ≥ 5. Then G has a sub graph isomorphic to K2,n and
hence kc(G) ≥ kc(K2,n) = n + 8 (By Proposition 2.3 point 2, Remark 1.3 and
Theorem 2.5)
We exhibit a labelling g below with span n+8 which proves the required result.

Let g(x) =



1, if x = u

4, if x = v

6, if x = v1

11, if x = u1

3, if x = u2

8, if x = u3

13, if x = u4

5, if x = u5

8, if x = v2

9, if x = v3

10, if x = u6

i+ 8, if x = vi, 4 ≤ i ≤ n

It can be easily seen that between each pair of vertices of G there is a
L(4, 3, 2, 1)-path coloring as follows:
Since u is adjacent to v1, v1 is adjacent to ui and ui is adjacent to ui+1, ∀i,
1 ≤ i ≤ 5 , u− v1 − u1 − u2 − u3 − u4 − u5 − u6 forms a path of length 7 which
is a L(4, 3, 2, 1)-path. Its enough to show that there is a L(4, 3, 2, 1)-path from
u and v to all the vi’s of G.

(1) For every i, 1 ≤ i ≤ n, the path from u to vi is [u, vi].
(2) The path from u to v is [u, vi, v], 2 ≤ i ≤ n respectively.
(3) The path from v to v1 is [v, v3, u, v1].
(4) For every i, 2 ≤ i ≤ n, the path from v to vi is [v, vi].
(5) The path from v to u6 is [v, vn, u, v1, u1, u2, u3, u4, u5, u6].
(6) The path from v1 to v2 is [v1, u, v4, v, v2].
(7) The path from v1 to vj is [v1, u, vj ], 3 ≤ j ≤ n.
(8) The path from v2 to v3 is [v2, u, v4, v, v3].
(9) The path from v2 to vj is [v2, u, vj ], 4 ≤ j ≤ n.
(10) The path from vi to vj is [vi, u, vj ], 3 ≤ i<j ≤ n.

□
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From the above Theorem 5.1 it is clear that there is no gap in the kc(G)
number line except at 6, 7 and 10.

6. Conclusion

In this paper, kc(G) of certain classes of graphs were obtained which could
be very helpful in providing a safe communication by reducing the interference
in wireless networks. The authors are working towards generalising the idea
of path coloring to levels equal to diameter of the graph and developing the
mathematical theory governing it.
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