• 제목/요약/키워드: complete bipartite

검색결과 31건 처리시간 0.016초

FUZZY SUPER SUBDIVISION MODEL WITH AN APPLICATION IN INFECTION GROWTH ANALYSIS

  • Jeba Sherlin Mohan;Samad Noeiaghdam;Leo Savarimuthu;Bharathi Thangavelu
    • 대한수학회논문집
    • /
    • 제39권3호
    • /
    • pp.803-819
    • /
    • 2024
  • In our study, the integration of fuzzy graphs into classical graph theory gives rise to a novel concept known as "Fuzzy Super Subdivision." Let SSf (G) be the fuzzy super subdivision graphs, by substituting a complete bipartite graph k(2,m) (m = 1, 2, . . .) for each edge of a fuzzy graph. The attributes and properties of this newly proposed concept are briefly outlined, in addition to illustrative examples. Furthermore, significant findings are discussed on connectivity, size, degree and order of fuzzy super subdivision structures. To illustrate the practical implications of our approach, we present an application focused on analyzing the growth of infections in blood or urine samples using the Fuzzy Super Subdivision model.

Complexity Issues of Perfect Roman Domination in Graphs

  • Chakradhar, Padamutham;Reddy, Palagiri Venkata Subba
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.661-669
    • /
    • 2021
  • For a simple, undirected graph G = (V, E), a perfect Roman dominating function (PRDF) f : V → {0, 1, 2} has the property that, every vertex u with f(u) = 0 is adjacent to exactly one vertex v for which f(v) = 2. The weight of a PRDF is the sum f(V) = ∑v∈V f(v). The minimum weight of a PRDF is called the perfect Roman domination number, denoted by γRP(G). Given a graph G and a positive integer k, the PRDF problem is to check whether G has a perfect Roman dominating function of weight at most k. In this paper, we first investigate the complexity of PRDF problem for some subclasses of bipartite graphs namely, star convex bipartite graphs and comb convex bipartite graphs. Then we show that PRDF problem is linear time solvable for bounded tree-width graphs, chain graphs and threshold graphs, a subclass of split graphs.

THE ZAGREB INDICES OF BIPARTITE GRAPHS WITH MORE EDGES

  • XU, KEXIANG;TANG, KECHAO;LIU, HONGSHUANG;WANG, JINLAN
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.365-377
    • /
    • 2015
  • For a (molecular) graph, the first and second Zagreb indices (M1 and M2) are two well-known topological indices, first introduced in 1972 by Gutman and Trinajstić. The first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. Let $K_{n_1,n_2}^{P}$ with n1 $\leq$ n2, n1 + n2 = n and p < n1 be the set of bipartite graphs obtained by deleting p edges from complete bipartite graph Kn1,n2. In this paper, we determine sharp upper and lower bounds on Zagreb indices of graphs from $K_{n_1,n_2}^{P}$ and characterize the corresponding extremal graphs at which the upper and lower bounds on Zagreb indices are attained. As a corollary, we determine the extremal graph from $K_{n_1,n_2}^{P}$ with respect to Zagreb coindices. Moreover a problem has been proposed on the first and second Zagreb indices.

On Comaximal Graphs of Near-rings

SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

  • Seo, Seunghyun;Shin, Heesung
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.467-481
    • /
    • 2015
  • Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs. We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph G is related to the $Poincar\acute{e}$ polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold M(G). We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold M(G) for complete multipartite graphs G.

ENUMERATION OF GRAPHS AND THE CHARACTERISTIC POLYNOMIAL OF THE HYPERPLANE ARRANGEMENTS 𝒥n

  • Song, Joungmin
    • 대한수학회지
    • /
    • 제54권5호
    • /
    • pp.1595-1604
    • /
    • 2017
  • We give a complete formula for the characteristic polynomial of hyperplane arrangements ${\mathcal{J}}_n$ consisting of the hyperplanes $x_i+x_j=1$, $x_k=0$, $x_l=1$, $1{\leq}i$, j, k, $l{\leq}n$. The formula is obtained by associating hyperplane arrangements with graphs, and then enumerating central graphs via generating functions for the number of bipartite graphs of given order, size and number of connected components.

GROUP ACTION FOR ENUMERATING MAPS ON SURFACES

  • Mao, Linfan;Liu, Yanpei
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.201-215
    • /
    • 2003
  • A map is a connected topological graph $\Gamma$ cellularly embedded in a surface. For any connected graph $\Gamma$, by introducing the concertion of semi-arc automorphism group Aut$\_$$\frac{1}{2}$/$\Gamma$ and classifying all embedding of $\Gamma$ undo. the action of this group, the numbers r$\^$O/ ($\Gamma$) and r$\^$N/($\Gamma$) of rooted maps on orientable and non-orientable surfaces with underlying graph $\Gamma$ are found. Many closed formulas without sum ∑ for the number of rooted maps on surfaces (orientable or non-orientable) with given underlying graphs, such as, complete graph K$\_$n/, complete bipartite graph K$\_$m, n/ bouquets B$\_$n/, dipole Dp$\_$n/ and generalized dipole (equation omitted) are refound in this paper.

건이전술로 치료한 비부골 골절을 동반된 장 비골건 완전 파열 (증례 보고) (Total Rupture of Peroneus Longus Tendon Through an Os Peroneum Fracture Treated by Tendon Transfer (A Case Report))

  • 전준영;;김형년;박용욱
    • 대한족부족관절학회지
    • /
    • 제17권4호
    • /
    • pp.325-328
    • /
    • 2013
  • Fracture of os peroneum can occur, but the fracture fragments are seldom displaced. Complete rupture of peroneus longus through the fracture of the os peroneum causing displacement of the fracture fragments is not well reported in the literature. Differential diagnosis with bipartite os peroneum or calcific tendinitis is important because misdiagnosis of the tendon rupture can lead to serious sequela including chronic pain, ankle instability, and peroneal compartment syndrome. We report a case of complete rupture of peroneus longus associated with fracture of the os peroneum with a review of the literature.

Connected geodesic number of a fuzzy graph

  • Rehmani, Sameeha;Sunitha, M.S.
    • Annals of Fuzzy Mathematics and Informatics
    • /
    • 제16권3호
    • /
    • pp.301-316
    • /
    • 2018
  • In this paper, the concept of connected geodesic number, $gn_c(G)$, of a fuzzy graph G is introduced and its limiting bounds are identified. It is proved that all extreme nodes of G and all cut-nodes of the underlying crisp graph $G^*$ belong to every connected geodesic cover of G. The connected geodesic number of complete fuzzy graphs, fuzzy cycles, fuzzy trees and of complete bipartite fuzzy graphs are obtained. It is proved that for any pair k, n of integers with $3{\leq}k{\leq}n$, there exists a connected fuzzy graph G : (V, ${\sigma}$, ${\mu}$) on n nodes such that $gn_c(G)=k$. Also, for any positive integers $2{\leq}a<b{\leq}c$, it is proved that there exists a connected fuzzy graph G : (V, ${\sigma}$, ${\mu}$) such that the geodesic number gn(G) = a and the connected geodesic number $gn_c(G)=b$.

PACKING TREES INTO COMPLETE K-PARTITE GRAPH

  • Peng, Yanling;Wang, Hong
    • 대한수학회보
    • /
    • 제59권2호
    • /
    • pp.345-350
    • /
    • 2022
  • In this work, we confirm a weak version of a conjecture proposed by Hong Wang. The ideal of the work comes from the tree packing conjecture made by Gyárfás and Lehel. Bollobás confirms the tree packing conjecture for many small tree, who showed that one can pack T1, T2, …, $T_{n/\sqrt{2}}$ into Kn and that a better bound would follow from a famous conjecture of Erdős. In a similar direction, Hobbs, Bourgeois and Kasiraj made the following conjecture: Any sequence of trees T1, T2, …, Tn, with Ti having order i, can be packed into Kn-1,[n/2]. Further Hobbs, Bourgeois and Kasiraj [3] proved that any two trees can be packed into a complete bipartite graph Kn-1,[n/2]. Motivated by the result, Hong Wang propose the conjecture: For each k-partite tree T(𝕏) of order n, there is a restrained packing of two copies of T(𝕏) into a complete k-partite graph Bn+m(𝕐), where $m={\lfloor}{\frac{k}{2}}{\rfloor}$. Hong Wong [4] confirmed this conjecture for k = 2. In this paper, we prove a weak version of this conjecture.