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THE ZAGREB INDICES OF BIPARTITE GRAPHS WITH

MORE EDGES†

KEXIANG XU∗, KECHAO TANG, HONGSHUANG LIU, JINLAN WANG

Abstract. For a (molecular) graph, the first and second Zagreb indices
(M1 and M2) are two well-known topological indices, first introduced in
1972 by Gutman and Trinajstić. The first Zagreb index M1 is equal to the

sum of the squares of the degrees of the vertices, and the second Zagreb
index M2 is equal to the sum of the products of the degrees of pairs of
adjacent vertices. Let Kp

n1,n2 with n1 ≤ n2, n1 + n2 = n and p < n1

be the set of bipartite graphs obtained by deleting p edges from complete
bipartite graph Kn1,n2 . In this paper, we determine sharp upper and
lower bounds on Zagreb indices of graphs from Kp

n1,n2 and characterize
the corresponding extremal graphs at which the upper and lower bounds

on Zagreb indices are attained. As a corollary, we determine the extremal
graph from Kp

n1,n2 with respect to Zagreb coindices. Moreover a problem
has been proposed on the first and second Zagreb indices.
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1. Introduction

We only consider finite, undirected and simple graphs throughout this paper.
Let G be a graph with vertex set V (G) and edge set E(G). For any vertex
v ∈ V (G), we denote by NG(v) the set of its neighbors in G. The degree of
v ∈ V (G), denoted by dG(v), is the cardinality of NG(v), i.e., the number of
vertices in G adjacent to v. For a subset W of V (G), let G−W be the subgraph
of G obtained by deleting the vertices of W and the edges incident with them.
Similarly, for a subset E′ of E(G), we denote by G − E′ the subgraph of G
obtained by deleting the edges of E′. If W = {v} and E′ = {xy}, the subgraphs
G−W and G− E′ will be written as G− v and G− xy for short, respectively.
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Kn1,n2 is a complete bipartite graph of order n = n1 +n2 and two bipartite sets
V1 and V2 with |Vi| = ni for i = 1, 2. Other undefined notations and terminology
on the graph theory can be found in [4].

A graphical invariant is a number related to a graph which is a structural
invariant, in other words, it is a fixed number under graph automorphisms.
In chemical graph theory, these invariants are also known as the topological
indices. Two of the oldest graph invariants are the well-known Zagreb indices
first introduced in [17] where Gutman and Trinajstić examined the dependence
of total π-electron energy on molecular structure and elaborated in [18]. For a
(molecular) graph G, the first Zagreb index M1(G) and the second Zagreb index
M2(G) are, respectively, defined as follows:

M1 = M1(G) =
∑

v∈V (G)

dG(v)
2, M2 = M2(G) =

∑
uv∈E(G)

dG(u)dG(v).

Another well-known version of first Zagreb index is in the following:

M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v)) (1)

These two classical topological indices reflect the extent of branching of the
molecular carbon-atom skeleton [3, 22, 25]. The main properties of M1 and M2

were summarized in [5, 7–9, 14–16, 20, 24, 26, 28]. In particular, Deng [9] gave
a unified approach to determine extremal values of Zagreb indices for trees,
unicyclic, and bicyclic graphs, respectively. For some newest applications of
Zagreb indices of graphs, please see [6,13,14,19,23]. In recent years, some novel
variants of ordinary Zagreb indices have been introduced and studied, such as
Zagreb coindices [1,2,10], multiplicative Zagreb indices [12,24,30], multiplicative
sum Zagreb index [11, 27] and multiplicative Zagreb coindices [29]. Especially
the first and second Zagreb coindices of graph G are defined [1, 10] in what
follows:

M1 = M1(G) =
∑

u̸=v,uv/∈E(G)

(dG(u) + dG(v)),

M2 = M2(G) =
∑

u̸=v,uv/∈E(G)

dG(u)dG(v).

Hereafter we always assume that n1, n2, p are three positive integers such that
n1 ≤ n2, n1 + n2 = n and p < n1. We denote by Kp

n1,n2
the set of bipartite

graphs obtained by deleting p edges from the complete bipartite graph Kn1,n2 .
In this paper we present sharp upper and lower bounds on the Zagreb indices
of graphs from Kp

n1,n2
and characterize the extremal graphs at which the upper

or lower bounds are attained. As a corollary, we also determine the extremal
graph from Kp

n1,n2
with respect to Zagreb coindices. Finally an open problem

is proposed on the Zagreb indices.
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2. Preliminaries

In this section we list or prove some lemmas as preliminaries, which will be
further used .

Lemma 2.1 ( [1,2]). Let G be a connected graph of order n and with m edges.
Then we have

(1) M1(G) = 2m(n− 1)−M1(G);
(2) M2(G) = 2m2 −M2(G)− 1

2M1(G).

Lemma 2.2. Let G be a connected graph with e = uv ∈ E(G) and G′ = G−uv.
Then we have M1(G

′) = M1(G)− 2− 2(dG′(u) + dG′(v)).

Proof. By the definition of first Zagreb index, we have

M1(G)−M1(G
′) = dG(u)

2 − dG′(u)2 + dG(v)
2 − dG′(v)2

= (dG′(u) + 1)2 − dG′(u)2 + (dG′(v) + 1)2 − d2G′(v)

= 2 + 2(dG′(u) + dG′(v)),

which completes the proof. �

Lemma 2.3. Let G be a connected graph with uv ∈ E(G) and NG(u) \ {v} =
{v1, v2, · · · , vα} and NG(v)\{u} = {u1, u2, · · · , uβ}. Suppose that G′ = G−uv.
Then we have

M2(G
′) = M2(G)−

[
dG(u)dG(v) +

α∑
i=1

dG(vi) +
β∑

j=1

dG(uj)
]
.

Proof. From the definition of second Zagreb index, we have

M2(G
′)−M2(G) = dG′(u)

α∑
i=1

dG′(vi) + dG′(v)

β∑
j=1

dG′(uj)

−
[
dG(u)

α∑
i=1

dG(vi) + dG(v)

β∑
j=1

dG(uj)
]
− dG(u)dG(v)

= (dG(u)− 1)

α∑
i=1

dG(vi) + (dG(v)− 1)

β∑
j=1

dG(uj)

−
[
dG(u)

α∑
i=1

dG(vi) + dG(v)

β∑
j=1

dG(uj)
]
− dG(u)dG(v)

= −
[
dG(u)dG(v) +

α∑
i=1

dG(vi) +

β∑
j=1

dG(uj)
]
.

Thus the proof this lemma was completed. �
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3. Extremal graphs from Kp
n1,n2

w. r. t. Zagreb indices

In this section we will consider the extremal graphs from Kp
n1,n2

with respect
to Zagreb indices. Before presenting the main results, we first introduce some
special graphs inKp

n1,n2
. LetK0

n1,n2
(e1, e2, · · · , ep) be a bipartite graph obtained

by deleting p edges e1, e2, · · · , ep fromKn1,n2 where all e1, e2, · · · , ep are pairwise
independent. And we denote by K1,1

n1,n2
(e1, e2, · · · , ep) the bipartite graph ob-

tained by deleting p edges e1, e2, · · · , ep from Kn1,n2 where e1, e2, · · · , ep have a
common vertex in the partite set of size n1 in it. Similarly, K1,2

n1,n2
(e1, e2, · · · , ep)

is a bipartite graph obtained by deleting p edges e1, e2, · · · , ep from Kn1,n2 where
all e1, e2, · · · , ep have a common vertex in the partite set of size n2 in it. As

three examples, K0
3,4(e1, e2), K

1,1
3,4 (e1, e2) and K1,2

3,4 (e1, e2) are shown in Figure 1.

Figure 1. The graphs K0
3,4(e1, e2), K

1,1
3,4 (e1, e2) and K1,2

3,4 (e1, e2)

When p = 1, there is only one graph in Kp
n1,n2

, and there is nothing to deal
with for our main problem. So in what follows, we always assume that p ≥ 2. In
the following theorem we will determine the extremal graphs from Kp

n1,n2
with

respect to the first Zagreb index.

Theorem 3.1. For any graph G ∈ Kp
n1,n2

, we have

nn1n2 − 2np+ 2p ≤ M1(G) ≤ nn1n2 − 2np+ p2 + p (2)

with left equality holding if and only if G ∼= K0
n1,n2

(e1, e2, · · · , ep) and right

equality holding if and only if G ∼= K1,i
n1,n2

(e1, e2, · · · , ep) for i = 1, 2.

Proof. We prove this result by induction on p, i.e., the number of edges deleted
from Kn1,n2 . When p = 2, there exist exactly three graphs in the set G ∈
Kp

n1,n2
, which are just K0

n1,n2
(e1, e2), K

1,1
n1,n2

(e1, e2) and K1,2
n1,n2

(e1, e2). From
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the definition of first Zagreb index, we have

M1(K
0
n1,n2

(e1, e2)) = nn1n2 − 4n+ 4,

M1(K
1,1
n1,n2

(e1, e2)) = M1(K
1,2
n1,n2

(e1, e2))

= nn1n2 − 4n+ 6.

Therefore the results in this theorem hold immediately.
Assume that the results hold for p = k − 1. Now we consider the case when

p = k. For any graph G ∈ Kk
n1,n2

, there exists a graph G∗ ∈ Kk−1
n1,n2

with
uv ∈ E(G∗) and G∗ − uv = G. By Lemma 2.2, we have

M1(G) = M1(G
∗)− 2− 2(dG(u) + dG(v)) (3)

Now we assume that, at vertices u ∈ V1 and v ∈ V2 in G∗, there are k1, k2
edges, respectively, deleted from Kn1,n2 . Then we claim that 0 ≤ k1+k2 ≤ k−1
and dG∗(u)+dG∗(v) = n−k1−k2. Considering the facts that dG(u) = dG∗(u)−1
and dG(v) = dG∗(v)− 1, we have

dG(u) + dG(v) = n− 2− k1 − k2 (4)

Combining these two equalities (3) and (4), we arrive at the following:

M1(G) = M1(G
∗)− 2(n− 1) + 2(k1 + k2) (5)

Next it suffices to deal with the equality (5). For the left part in (2), by the
induction hypothesis and equality (5), we have

M1(G) = M1(G
∗)− 2(n− 1) + 2(k1 + k2)

≥ nn1n2 − 2n(k − 1) + 2(k − 1)− 2(n− 1)

= nn1n2 − 2nk + 2k

= M1(K
0
n1,n2

(e1, e2, · · · , ek))

The above equality holds if and only if G∗ ∈ Kk−1
n1,n2

with G∗ ∼= K0
n1,n2

(e1, e2, · · · , ek−1)

and k1 = 0, k2 = 0. Equivalently, G∗ ∼= K0
n1,n2

(e1, e2, · · · , ek−1) and ek = uv
is independent of any one edge from {e1, e2, · · · , ek−1}. Therefore we have
G ∼= K0

n1,n2
(e1, e2, · · · , ek). Then the proof of the left part in (2) is completed.

Now we turn to the right part of (2). By the induction hypothesis and equality
(5), we have

M1(G) = M1(G
∗)− 2(n− 1) + 2(k1 + k2)

≤ nn1n2 − 2n(k − 1) + (k − 1)2 + (k − 1)− 2(n− 1) + 2(k − 1)

= nn1n2 − 2nk + k2 + k

= M1(K
1,i
n1,n2

(e1, e2, · · · , ek)) for i = 1, 2.

The above equality holds if and only if G∗ ∈ Kk−1
n1,n2

with G∗ ∼= K1,i
n1,n2 (e1, e2, · · · , ek−1)

for i = 1, 2 and k1+k2 = k−1, i.e., G∗ ∼= K1,1
n1,n2

(e1, e2, · · · , ek−1) and k1 = k−1,

k2 = 0 or G∗ ∼= K1,2
n1,n2

(e1, e2, · · · , ek−1) and k1 = 0, k2 = k − 1.
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Thus we find that, either in G∗ ∼= K1,1
n1,n2

(e1, e2, · · · , ek−1), there are k − 1

edges deleted from the vertex u ∈ V1 ofKn1,n2 ; or in G∗ ∼= K1,2
n1,n2

(e1, e2, · · · , ek−1),
there are k − 1 edges from v ∈ V2 of Kn1,n2 . Therefore, we conclude that G ∼=
K1,1

n1,n2
(e1, e2, · · · , ek−1, ek) or ∼= K1,2

n1,n2
(e1, e2, · · · , ek−1, ek). This completes the

proof of this theorem. �

In the theorem below we characterize the extremal graphs from Kp
n1,n2

with
respect to the second Zagreb index.

Theorem 3.2. For any graph G ∈ Kp
n1,n2

with n1 < n2, we have

n2
1n

2
2 − 3pn1n2 + np+ p2 − p ≤ M2(G) ≤ n2

1n
2
2 − 3pn1n2 + np+ n2(p

2 − p) (6)

with left equality holding if and only if G ∼= K0
n1,n2

(e1, e2, · · · , ep) and right

equality holding if and only if G ∼= K1,2
n1,n2

(e1, e2, · · · , ep).

Proof. We prove this result by induction on p. When p = 2, there exist exactly
three graphs in the set Kp

n1,n2
, which are just K0

n1,n2
(e1, e2), K

1,1
n1,n2

(e1, e2) and

K1,2
n1,n2

(e1, e2). From the definition of second Zagreb index, we have

M2(K
0
n1,n2

(e1, e2)) = n2
1n

2
2 − 6n1n2 + 2n+ 2,

M2(K
1,1
n1,n2

(e1, e2)) = n2
1n

2
2 − 6n1n2 + 2n+ 2n1,

M2(K
1,2
n1,n2

(e1, e2)) = n2
1n

2
2 − 6n1n2 + 2n+ 2n2.

Obviously,M2(K
0
n1,n2

(e1, e2)) < M2(K
1,1
n1,n2

(e1, e2)) < M2(K
1,2
n1,n2

(e1, e2)). Thus
our results hold as desired.

Now we assume that the results in (6) hold for p = k−1. Then we consider the
case when p = k. For any graph G ∈ Kk

n1,n2
, there exists a graph G∗ ∈ Kk−1

n1,n2

with u ∈ V1, v ∈ V2, uv ∈ E(G∗) and G∗ − uv = G. The structure of G∗

is shown in Fig. 2 where the polygonal lines denote the deleted edges from

Kn1,n2 . Suppose that NG∗(u)\{v} = {v1, v2, · · · , vα}
∆
= X1 and NG∗(v)\{u} =

{u1, u2, · · · , uβ}
∆
= X4. Let V1 \ (X4 ∪ {u}) = X3 and V2 \ (X1 ∪ {v}) = X2. By

Lemma 2.3, we have

M2(G) = M2(G
∗)−

[
dG∗(u)dG∗(v) +

α∑
i=1

dG∗(vi) +

β∑
j=1

dG∗(uj)
]
. (7)

As introduced in [8], for any vertex v in a graph G, we denote by mG(v) the
average of the degrees of all vertices adjacent to vertex v in G. Again we assume
that, at vertices u ∈ V1 and v ∈ V2 in G∗, there are k1, k2 edges, respectively,
deleted from Kn1,n2 . Let the number of edges deleted between the two subsets
X1, X3 in G∗ and between the two subsets X1, X4 be x1 and y1, respectively,
the edges deleted between the two subsets X2, X3 and between the two subsets
X2, X4 be x2 and y2, respectively. Moreover we have x1 + x2 + y1 + y2 =
k − 1− k1 − k2. Then we claim that

dG∗(v1) + · · ·+ dG∗(vα) = dG∗(u)mG∗(u)− dG∗(v) with α = n2 − k1 − 1,
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Figure 2. The structure of graph G∗

dG∗(u1) + · · ·+ dG∗(uβ) = dG∗(v)mG∗(v)− dG∗(u) with β = n1 − k2 − 1.

From the definition of mG∗(u), we arrive at:

mG∗(u) =
dG∗(v1) + · · ·+ dG∗(vα) + dG∗(v)

n2 − k1

=
(n2 − k1)n1 − (x1 + y1 + k2)

n2 − k1
.

Similarly, we have

mG∗(v) =
dG∗(u1) + · · ·+ dG∗(uβ) + dG∗(u)

n1 − k2

=
(n1 − k2)n2 − (k1 + y1 + y2)

n1 − k2
.

Combining the above two equalities with equality (7), we get

M2(G) = M2(G
∗)−

[
dG∗(u)dG∗(v)− dG∗(u)− dG∗(v)

+ dG∗(u)mG∗(u) + dG∗(v)mG∗(v)
]

= M2(G
∗)−

[
(n2 − k1)(n1 − k2)− (n2 − k1)− (n1 − k2)

+ (n2 − k1)n1 − (x1 + y1 + k2) + (n1 − k2)n2 − (k1 + y1 + y2)
]

= M2(G
∗)−

[
3n1n2 − n2 − n1 − 2k1n1 − 2k2n2

+ k1k2 − x1 − 2y1 − y2

]
= M2(G

∗)− (3n1n2 − n) + 2k1n1 + 2k2n2 − k1k2 + x1 + 2y1 + y2 (∗)
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It can be easily checked that the term 2k1n1 + 2k2n2 − k1k2 reaches its min-
imum value 0 when k1 = k2 = 0. For the left part in (6), from equality (∗) and
the induction hypothesis, we have

M2(G) = M2(G
∗)− (3n1n2 − n) + 2k1n1 + 2k2n2 − k1k2 + x1 + 2y1 + y2

≥ n2
1n

2
2 − 3(k − 1)n1n2 + n(k − 1) + (k − 1)2 − (k − 1)

− (3n1n2 − n) + x1 + 2y1 + y2

= n2
1n

2
2 − 3(k − 1)n1n2 + n(k − 1) + (k − 1)2 − (k − 1)

− (3n1n2 − n) + 2(k − 1)

(since k1 = k2 = 0 implies that x1 = y2 = 0 and y1 = k − 1)

= n2
1n

2
2 − 3kn1n2 + nk + k2 − k

= M2(K
0
n1,n2

(e1, e2, · · · , ek)).

The above equality holds if and only if G∗ ∼= K0
n1,n2

(e1, e2, · · · , ek−1) and
k1 = 0, k2 = 0. Moreover, from the statement k1 = 0, k2 = 0 we can deduce that
ek = uv is independent of any edge of {e1, e2, · · · , ek−1}. Therefore we find that
G ∼= K0

n1,n2
(e1, e2, · · · , ek), which ends the proof of left part in (6).

Now we will turn to the proof for the right part in (6). From the definition
of mG(v) for any vertex v in a graph G and the structure of G∗, we have

mG∗(u) =
dG∗(v1) + · · ·+ dG∗(vα) + dG∗(v)

n2 − k1

≥ (n2 − k1)n1 − (k − 1− k1)

n2 − k1
.

Similarly, we have

mG∗(v) ≥ (n1 − k2)n2 − (k − 1− k2)

n1 − k2
.

Combining the above two inequalities with equality equality (7), we can obtain

M2(G) = M2(G
∗)−

[
dG∗(u)dG∗(v)− dG∗(u)− dG∗(v)

+ dG∗(u)mG∗(u) + dG∗(v)mG∗(v)
]

≤ M2(G
∗)−

[
(n2 − k1)(n1 − k2)− (n2 − k1)− (n1 − k2)

+ (n2 − k1)n1 − (k − 1− k1) + (n1 − k2)n2 − (k − 1− k2)
]

= M2(G
∗)− (3n1n2 − n− 2k + 2) + 2(n2 − 1)k2

+ 2(n1 − 1)k1 − k1k2 (∗∗)

Clearly the term 2(n2 − 1)k2 +2(n1 − 1)k1 − k1k2 reaches its maximum value
2(n2 − 1)(k− 1) when k1 = 0 and k2 = k− 1. From the induction hypothesis, it



The Zagreb indices of bipartite graphs with more edges 373

follows that

M2(G) ≤ n2
1n

2
2 − 3(k − 1)n1n2 + n(k − 1) + n2

[
(k − 1)2 − (k − 1)

]
− (3n1n2 − n− 2k + 2) + 2(n2 − 1)(k − 1)

= n2
1n

2
2 − 3kn1n2 + nk + n2(k

2 − k)

= M2(K
1,2
n1,n2

(e1, e2, · · · , ek)).

The above two equalities holds if and only if G∗ ∼= K1,2
n1,n2

(e1, e2, · · · , ek−1)
and k1 = 0, k2 = k − 1. That is to say, G is obtained by deleting from
K1,2

n1,n2
(e1, e2, · · · , ek−1) one more edge which has one common vertex with that

one of {e1, e2, · · · , ek−1} in it. Therefore we claim thatG ∼= K1,2
n1,n2

(e1, e2, · · · , ek),
finishing the proof of right part in (6). Thus we complete the proof of this the-
orem. �

Note that K1,1
n1,n2

(e1, e2, · · · , ek) ∼= K1,2
n1,n2

(e1, e2, · · · , ek) if n1 = n2. We

denote byK1
n1,n2

(e1, e2, · · · , ek) this graph when n1 = n2. By a similar reasoning
as that in the proof of Theorem 3.2, the following corollary can be easily obtained.

Corollary 3.1. For any graph G ∈ Kp
t,t, we have

t4 − 3pt2 + 2tp+ p2 − p ≤ M2(G) ≤ t4 − 3pt2 + 2tp+ t(p2 − p) (8)

with left equality holding if and only if G ∼= K0
t,t(e1, e2, · · · , ep) and right equality

holding if and only if G ∼= K1
t,t(e1, e2, · · · , ep).

Now we turn to the determination of extremal graphs from Kp
n1,n2

with re-
spect to Zagreb coindices. Based on Lemma 2.1 (1), we have

M1(K
0
n1,n2

(e1, e2, · · · , ep)) = 2(n1n2 − p)(n− 1)−M1(K
0
n1,n2

(e1, e2, · · · , ep))
= 2(n1n2 − p)(n− 1)− (nn1n2 − 2np+ 2p)

= (n− 2)n1n2 − p,

M1(K
1,i
n1,n2

(e1, e2, · · · , ep)) = 2(n1n2 − p)(n− 1)−M1(K
1,i
n1,n2

(e1, e2, · · · , ep))

= 2(n1n2 − p)(n− 1)− (nn1n2 − 2np+ p2 + p)

= (n− 2)n1n2 − p2 for i = 1, 2.

Moreover the following result can be easily obtained.

Corollary 3.2. For any graph G ∈ Kp
n1,n2

, we have

(n− 2)n1n2 − p2 ≤ M1(G) ≤ (n− 2)n1n2 − p (9)

with left equality holding if and only if G ∼= K1,i
n1,n2

(e1, e2, · · · , ep) for i = 1, 2

and right equality holding if and only if G ∼= K0
n1,n2

(e1, e2, · · · , ep).

In view of Lemma 2.1 (2), we have

M2(K
0
n1,n2

(e1, e2, · · · , ep)) = 2(n1n2 − p)2 −M2(K
0
n1,n2

(e1, e2, · · · , ep))
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− 1

2
M1(K

0
n1,n2

(e1, e2, · · · , ep))

= 2(n1n2 − p)2 − (n2
1n

2
2 − 3pn1n2 + np+ p2 − p)

− 1

2
(nn1n2 − 2np+ 2p)

= n2
1n

2
2 − (p+

1

2
)n1n2 + p2,

M2(K
1,2
n1,n2

(e1, e2, · · · , ep)) = 2(n1n2 − p)2 −M2(K
1,2
n1,n2

(e1, e2, · · · , ep))

− 1

2
M1(K

1,2
n1,n2

(e1, e2, · · · , ep))

= 2(n1n2 − p)2 − [n2
1n

2
2 − 3pn1n2 + np+ n2(p

2 − p)]

− 1

2
(nn1n2 − 2np+ p2 + p)

= n2
1n

2
2 − (p+

1

2
)n1n2 − (n2 −

3

2
)p2 + (n2 −

1

2
)p.

Corollary 3.3. For any graph G ∈ Kp
n1,n2

, we have

n2
1n

2
2 − (p+

1

2
)n1n2 − (n2 −

3

2
)p2 + (n2 −

1

2
)p ≤ M2(G) ≤ n2

1n
2
2 − (p+

1

2
)n1n2 + p2 (10)

with left equality holding if and only if G ∼= K1,2
n1,n2

(e1, e2, · · · , ep) and right

equality holding if and only if G ∼= K0
n1,n2

(e1, e2, · · · , ep).

Proof. From Lemma 2.1 (2), it suffices to find the extremal graphs from Kp
n1,n2

at which the maximal (or minimal, resp.) first and second Zagreb indices are
simultaneously attained. Note that, from Theorems 3.1 and 3.2, the first Za-
greb index and second Zagreb index of graphs from Kp

n1,n2
with n1 < n2 reach

the maximum only when G ∼= K1,2
n1,n2

(e1, e2, · · · , ep). Thus our results follow
immediately from Theorems 3.1 and 3.2. �

4. A related problem

In this section we propose a problem related to the extremal graphs with
respect to Zagreb indices. Based on the alternative formula (1) of the first
Zagreb index and the definition of the second Zagreb index, these two indices
have very similar versions. Therefore, from the intuition, we think that, in a
given set G of connected graphs, the graphs with maximal first Zagreb index
are the same as the graphs with maximal second Zagreb index, and vice versa;
and the graphs with minimal first Zagreb index are the same as the graphs with
minimal second Zagreb index, and vice versa. We say that this set G satisfies
extremal identical graph property with respect to Zagreb indices (EIG property
w. r. t. Zagreb indices for short). Actually, our statement is true for many
known results, such as trees, unicyclic graphs, and bicyclic graphs (see [9]), and
so on. Furthermore, our main result in this paper is also a positive example to
our statement given above.
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Now we would like to propose an interesting problem related to the EIG
property as follows:

Problem 1. Characterizing the sets Γ of graphs which satisfy EIG property w.
r. t. Zagreb indices?

Moreover, it is reasonable to restrict the consideration to the cases when the
set Γ contains connected graphs of the same order.

Obviously, from Lemma 2.1, if a set Γ satisfies EIG property w. r. t. Zagreb
indices, then it also satisfies EIG w. r. t. Zagreb coindices. Moreover we can
also study the EIG property of any set of graphs with respect to other vertex-
degree-based topological indices, which may be of interest to us.
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