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Abstract. In our study, the integration of fuzzy graphs into classical
graph theory gives rise to a novel concept known as “Fuzzy Super Sub-

division.” Let SSf (G) be the fuzzy super subdivision graphs, by substi-

tuting a complete bipartite graph k(2,m) (m = 1, 2, . . .) for each edge
of a fuzzy graph. The attributes and properties of this newly proposed

concept are briefly outlined, in addition to illustrative examples. Further-

more, significant findings are discussed on connectivity, size, degree and
order of fuzzy super subdivision structures. To illustrate the practical

implications of our approach, we present an application focused on ana-

lyzing the growth of infections in blood or urine samples using the Fuzzy
Super Subdivision model.

1. Introduction

In between the scale of sharp or precise decisions, to address the uncertainty
or vagueness within sets, Lotfi Asker Zadeh introduced “fuzzy sets and fuzzy
relations” in 1965 [27], laying the groundwork for mathematical solutions. Ad-
ditionally, Rosenfeld [21] extended various concepts from graph theory into the
realm of fuzzy analogues and subsequent extensions by Kauffman’s proposition
of fuzzy graphs in 1973 [18], and Azriel Rosenfeld’s integration of fuzzy rela-
tions into fuzzy sets in 1975 and Bhattacharya made noteworthy observations
regarding fuzzy graphs [7]. In fuzzy graph, the membership values of edges and
vertices are mathematically represented as values ranging from [0, 1] [1, 2]. To
deal with uncertainty or vagueness, fuzzy graph theory and its extensions have
been applied in various domains such as image recognition, social networking,
decision making and medical diagnosis [3, 5, 6, 14,22].

The motivation stems from the constant advancement of graph theory
methodologies, particularly in the context of creating new graphs. As an
extension of subdivision [12], super subdivision of graphs was proposed by
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Sethuraman and Selvaraju in 2003 [23]. Replacing all edges of a graph with
the complete bipartite graph k(2,m) for m > 1 yields super subdivision of a
graph [4]. This operation can be used in diverse applications such as natural
language processing, medical imaging, and robotics and autonomous systems
[8,10,13,15,16]. On the basis of this foundation, the study on fuzzy super sub-
division graph is newly presented for potential new results and proofs within
the context of fuzzy graph theory.

The problem statement focuses on the gap found in the existing literature,
pertaining to fuzzy super subdivision graphs. In this domain, there has been
limited research and concepts, implying a need for further exploration and
understanding at the intersection of fuzzy graph, subdivision, and super sub-
division principles.

The objective of the paper outlines the introduction of fuzzy super subdivi-
sion graphs and its properties with practical applications. On addressing the
gap which serves as the primary motivation, we introduce and define fuzzy
super subdivision graphs with properties and results. This paper presents a
novel insight of fuzzy graphs in the context of super subdivision.

The novelty of this research paper is to introduce fuzzy super subdivision
graphs which extends graph theory into fuzzy framework with its structural
properties, such as adjacency, connectivity, and comparison between degree,
order and size. This research also demonstrates application in medical diagnosis
related to infection growth analysis. This proposed model produces visual and
analytical representation of complex nature of the bacterial growth through
different phases. Basic definitions are stated in preliminaries and fuzzy super
subdivision graph is presented in the main section with detailed explanation
and definitions.

2. Preliminaries

In this section, we review some basic definitions for fuzzy graph theory and
subdivision.

Definition 2.1 ([20]). A fuzzy graph G = (V,E, σ, µ) corresponding to the
crisp graph G is a non-empty set V together with a pair of functions σ :
V → [0, 1] and µ : V × V → [0, 1] such that for all u, v ∈ V , µ(u, v) ≤
min{σ(u), σ(v)}, where σ(u), σ(v) and µ(u, v) represent the membership values
of the vertex u and v and (u, v) is the corresponding adjacent edge, respectively.

Definition 2.2 ([11]). The degree of a vertex v of a fuzzy graph G is defined
by d(v) =

∑
(u̸=v) µ(u, v). The minimum and the maximum degree of G is

defined by δ(G) =
∧
{d(v)|v ∈ V } and ∆(G) =

∨
{d(v)|v ∈ V }, respectively.

Definition 2.3 ([11]). The size S(G) of a graph G is defined by d(v) =∑
(u̸=v) µ(u, v) and the orderO(G) of a graphG is defined byO(G)=

∑
v∈V σ(v).

Definition 2.4 ([20]). The strength of a path P{v1, v2, . . . , vn} of G is de-
fined as min{µ(vi, vi+1) : i = 1, 2, . . . , n − 1}. The strength of connectedness
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CONNG(v1, v2) or µ∞(v1, v2) between the vertices v1 and v2 is the maximum
strength among all the paths between v1 and v2. An v1 − v2 path P is called
a strongest v1 − v2 path if its strength equals CONNG(v1, v2).

Definition 2.5 ([25]). Let G be a fuzzy graph and Sf (G) denote the subdivi-
sion of G that is obtained from G by subdividing each edge of G once.

Definition 2.6 ([20]). A fuzzy graph G is said to be a complete fuzzy graph
if µ(uv) = min{σ(u), σ(v)} for u, v ∈ V .

3. Methodology: Fuzzy super subdivision graphs

Definition 3.1. Let G = (V,E, σ, µ) be a fuzzy graph with p vertices and
q edges. The super subdivision of a fuzzy graph is defined as SSf (G) =
(VSS , ESS , σSS , µSS) by replacing each edge vivj ∈ E such that i ̸= j and
1 ≤ i, j ≤ p, by a complete bipartite graph k(2,m) for m > 1 in such a way
that the ends of vivj are merged with the 2- vertices part of k(2,m). Here
VSS = V ∪ V ∗, where V ∗ contains super subdivided vertices w(p−1)t with
1 ≤ (p − 1) ≤ q and 1 ≤ t ≤ m and ESS is the collection of super subdivided
edges ers with 1 ≤ r ≤ q and 1 ≤ s ≤ 2m satisfying the following conditions

(1) σSS(vi) < σSS(w(p−1)t) > σSS(vj)
(2) µSS(viw(p−1)t) = σSS(vi) ∧ σSS(w(p−1)t) where vi ∈ V and w(p−1)t ∈

Vss.

Note 3.1. The super subdivided vertices of the cycle are wpt with 1 ≤ p ≤ q
and 1 ≤ t ≤ m.

Note 3.2. We have provided new membership values for the fuzzy super sub-
division graph so that it satisfies the above two conditions as the edge of the
fuzzy graph is replaced with the two new edges of the complete bipartite graph.

Example 3.2. Consider the fuzzy graph of a path P4 (in Figure 1). Fuzzy
super subdivision of path graph SSf (P4) = (VSS , ESS , σSS , µSS), where

VSS = {v1, w11, w12, v2, w21, w22, v3, w31, w32, v4}
and

ESS = {e11, e12, e13, e14, e21, e22, e23, e24, e31, e32, e33, e34}
is obtained by replacing each edge with the complete bipartite graph k(2,m),
where m = 2 in Figure 1.

Figure 1. Given Fuzzy graph of a path P4
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Figure 2. Fuzzy subdivided path graph P4

Figure 3. Fuzzy super subdivided path graph where m = 2
in k2,2 P4

On satisfying the conditions, the edge membership value and the vertex
membership values of the fuzzy super subdivided path graph SSf (P4) are given
as follows:

Vertex membership values:

σSS(v1) = 0.2, σSS(v2) = 0.3

σSS(v1) < σSS(w11) > σSS(v2) = 0.2 < 0.4 > 0.3.

Therefore,

σSS(w11) = 0.4

σSS(v1) = 0.2, σSS(v2) = 0.3

σSS(v1) < σSS(w12) > σSS(v2) = 0.2 < 0.5 > 0.3.

Therefore,

σSS(w12) = 0.5.

Similarly, σSS(w21) and σSS(w22) should be greater than σSS(v2) and σSS(v3).
Therefore, w21 = 0.6 and w22 = 0.7, w31 = 0.8 and w32 = 0.9.

Edge membership values:

µSS(v1w11) = σSS(v1) ∧ σSS(w11)

µSS(v1w11) = 0.2 ∧ 0.4 = 0.2.
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Therefore, e11 = 0.2. Similarly,

µSS(v2w11) = e12 = 0.3, µSS(v1w12) = e13 = 0.2

µSS(v2w12) = e14 = 0.3, µSS(v2w21) = e21 = 0.3

µSS(v3w21) = e22 = 0.5, µSS(v2w22) = e23 = 0.3

µSS(v3w22) = e24 = 0.5, µSS(v3w31) = e31 = 0.5

µSS(v4w31) = e32 = 0.7, µSS(v3w32) = e33 = 0.5

µSS(v4w32) = e34 = 0.7.

Remark 3.3. For m = 1 in k(2,m) (Figure 2), the subdivision of a fuzzy graph
G = (V,E, σ, µ) is Sf (G) = (VS , ES , σS , µS) where VS = V ∪ E and ES con-
taining subdivided edges with σS(v) = σ(v), v ∈ V and σS(q) = µ(q), q ∈ E
µS(uv) = σ(u) ∧ µ(v) for uv ∈ ES .

4. Connectivity

Proposition 4.1. Every pair of adjacent vertices in a fuzzy graph is non-
adjacent in its super subdivision.

Proof. Let G = (V,E, σ, µ) be a fuzzy graph with p vertices and q edges and its
fuzzy super subdivision SSf (G), where v1, v2, . . . , vp ∈ V are adjacent vertices
in G. We aim to prove that every pair of adjacent vertices in G is non-adjacent
in SSf (G). Assume, any two adjacent vertices vi and vj ∈ V in G. When G
undergoes super subdivision, each edge is replaced with a complete bipartite
graph k(2,m) for m > 1. In a fuzzy graph, adjacency is denoted by a non-
zero membership value associated with the edge between vertices. When vi
and vj are adjacent in G, the associated membership value implies a degree of
connection. In this fuzzy super subdivision process, a new vertex, w(p−1)t is
introduced to subdivide the edge between vi and vj , creating super subdivided
edges viw(p−1)t and vjw(p−1)t. Thus, w(p−1)t facilitates a connection between
vi and vj , it does not establish direct adjacency between them in SSf (G).
Therefore, the adjacent vertex pairs of G are no longer adjacent in its fuzzy
super subdivision. This holds for any pair of adjacent vertices in G. □

Proposition 4.2. The vertices that are connected in a fuzzy graph are not
connected in its super subdivision.

Proof. Let G = (V,E, σ, µ) be a fuzzy graph and SSf (G) be its fuzzy super
subdivided graph. To demonstrate that vertices connected in G are not directly
connected in SSf (G), consider any two vertices vi and vj ∈ V in G connected
by an edge, i.e., {vi, vj} ∈ E. On super subdividing the fuzzy graph G by
replacing this edge with k(2,m) for m > 1, a new vertex w(p−1t is introduced.
Consequently, w(p−1)t is connected to vi and vj forming new edges viw(p−1)t

and vjw(p−1)t in SSf (G). This implies that vi and vj are indirectly connected
through the super subdivided vertex w(p−1)t. Since there is an intermediate
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vertex w(p−1)t between vi and vj , they are no longer directly adjacent. There-
fore, the vertices connected by an edge in G are not directly connected in
SSf (G). □

Theorem 4.3. For every fuzzy graph, the number of edges in the corresponding
fuzzy super subdivided graph is equal to 2qm edges.

Proof. Let us consider G = (V,E, σ, µ) be the fuzzy graph and SSf (G) =

(VSS , ESS) be the fuzzy super subdivided graph. Let v1, v2, . . . , vp ∈ V and
e1, e2, . . . , eq ∈ E be the vertices and edges of the fuzzy graph respectively.
When super subdividing each edge in G, it involves replacing each edge with
a complete bipartite graph k(2,m) for m > 1. This replacement introduces
(p−1)t vertices where 1 ≤ (p−1) ≤ q and 1 ≤ t ≤ m i.e., m copies of the super
subdivided vertices. Additionally, ers edges are introduced, where 1 ≤ r ≤ q
and 1 ≤ s ≤ 2m i.e., representing 2m new edges of a path. Then we have

{w11, w12, . . . , w1t, w21, w22, . . . , w2t, . . . , w(p−1)1, w(p−1)2, . . . , w(p−1)t} ∈ VSS

and

{e11, e12, . . . , e1s, e21, e22, . . . , e2s, . . . , er1, er2, . . . , ers} ∈ ESS

as vertices and edges of the fuzzy super subdivided graphs respectively. There-
fore, the q number of edges in G after m super subdivision, the total number
of new edges introduced is q × 2m = 2qm. This concludes the proof. □

5. Degree, order and size

Definition 5.1. Let SSf (G) = (VSS , ESS , σSS , µSS) be the fuzzy super sub-
divided graph. The degree of a vertex v is defined by the sum of the mem-
bership value of super subdivided edges incident with v and it is denoted
by dSS(v) =

∑
(u̸=v) σSS(viw(p−1)t). The minimum and the maximum de-

gree is defined by δSS(G) =
∧
{dSS(w(p−1)t)|w(p−1)t} ∈ VSS and ∆SS(G) =∨

{dSS(w(p−1)t|w(p−1)t} ∈ VSS , respectively.

Definition 5.2. The size SSS(G) of fuzzy super subdivided graph SSf (G)
is defined by SSS(G) =

∑
(vi ̸=wp−1t)

µSS(vi, w(p−1)t) and the order OSS(G) of

fuzzy super subdivided fuzzy graph SSf (G) is defined by OSS(G) =∑
(vi ̸=w(p−1)t)

σSS(vi).

Example 5.3. Consider the fuzzy super subdivided twig graph

SSf (Tg2) = (VSS , ESS , σSS , σSS)

in Figure 4. The degree, order and size of the fuzzy super subdivided twig
graph SSf (Tg2) are given as follows:

d(v1) = 0.4, d(w11) = 0.5, d(w12) = 0.5

d(v2) = 2.4, d(w21) = 0.7, d(w22) = 0.7

d(v3) = 3.2, d(w31) = 0.9, d(w32) = 0.9
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Figure 4. Fuzzy super subdivided twig graph SSf (Tg2) for
k2,2

d(v4) = 1.0, d(w41) = 0.9, d(w42) = 0.9

d(v5) = 1.2, d(w51) = 1.2, d(w52) = 1.2

d(v6) = 1.6, d(w61) = 0.7, d(w62) = 0.7

d(v7) = 0.8, d(w71) = 1.3, d(w72) = 1.3, d(v8) = 1.8∑
(v1 ̸=w11)

µSS(v1w11) = 12.4

∑
(v1 ̸=w11)

σSS(v1) = 13.99.

Proposition 5.4. The maximum degree of any vertex in fuzzy super subdivided
graph with p vertices is less than or equal to p− 1.

Proof. Let SSf (G)=(VSS , ESS , σSS , µSS) be the fuzzy super subdivided graph.
Proof by contradiction: Suppose there exists a fuzzy super subdivided graph
with p vertices where the maximum degree of any vertex is greater than p−1. In
a fuzzy super subdivided graph, vertices are introduced during the subdivision
process. Each subdivision introduces a new vertex and connects it with a path
to the original vertices. Assume there exists a vertex vi in the graph with
a degree greater than p − 1. Let d be the degree of vi, where d > (p − 1).
Since vi has a degree greater than p − 1, it is connected to more than p − 1
vertices. Since d > (p − 1), there must be at least one vertex vj that vi is
connected to and such that vi has more than one edge connecting to vj . The
assumption that there exists a vertex with a degree greater than p− 1 leads to
a contradiction. □
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Proposition 5.5. Fuzzy super subdivided vertices within the path exhibit equal
degrees, when an edge is super subdivided.

Proof. Let SSf (G)=(VSS , ESS , σSS , µSS) be the fuzzy super subdivided graph.
Consider an edge (vi, vj) ∈ E in fuzzy graph G and by super subdividing the
edge, forms two paths: vi − w(p−1)1 − vj and vi − w(p−1)2 − vj . Since both
the super subdivided vertices w(p−1)1 and w(p−1)2 are introduced by super
subdividing the same edge, they connect to the same set of existing vertices
vi and vj in path. As a result of connecting to the same vertices, the degrees
of w(p−1)1 and w(p−1)2 are equal within the same path. Therefore, by the
process of super subdivision, the degrees of these super subdivided vertices are
identical since they connect to the same existing vertex. This completes the
proof, demonstrating that fuzzy super subdivided vertices introduced along the
same path in a fuzzy super subdivided graph have equal degrees. □

Theorem 5.6. In SSf (G), the sum of the degrees of all the vertices is twice
the sum of the membership values of all the edges.

Proof. Let SSf (G)=(VSS , ESS , σSS , µSS) be the fuzzy super subdivided graph.
Here

VSS = V ∪ V ∗

= {v1, w11, w12, . . . , w1t, v2, w21, w22, . . . , w2t, . . . , v(p−1),

w(p−1)1, w(p−1)2, . . . , w(p−1)t, vp}.
The degree of all vertices v ∈ Vss is defined as∑

v∈Vss

dss(v) =
[ p∑
i=1

dss(vi),

q∑
(p−1)=1

m∑
t=1

dss(w(p−1)t)
]

∑
v∈Vss

dss(v) = dss(v1) + dss(w11) + · · ·+ dss(w1t) + dss(v2) + dss(w21)

+ · · ·+ dss(w2t) + · · ·+ dss(v(p−1)) + dss(w(p−1)1)

+ · · ·+ dss(w(p−1)t) + dss(vp).

By the definition of the degree of a vertex,

dSS(v) =
∑

vi ̸=w(p−1)t

µSS(viw(p−1)t).

We have∑
vi ̸=w(p−1)t

dss(v) = µSS(v1w11) + µSS(v1w12) + · · ·+ µSS(v1w1t) + µSS(v1w11)

+ µSS(v2w11) + · · ·+ µSS(v1w1t) + µSS(v2w1t) + · · ·
+ µSS(v2w21) + µSS(v2w22) + · · ·+ µSS(v2w2t)

+ µSS(v2w21) + µSS(v3w21) + · · ·+ µSS(v2w2t)
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+ µSS(v3w2t) + · · ·+ µSS(v(p−1)w(p−1)1)

+ µSS(v(p−1)w(p−1)2) + · · ·+ µSS(v(p−1)w(p−1)t)

+ µSS(v(p−1)w(p−1)1) + µSS(vpw(p−1)1) + · · ·
+ µSS(v(p−1)w(p−1)t) + µSS(vpw(p−1)t) + µSS(vpw(p−1)1)

+ · · ·+ µSS(vpw(p−1)t).∑
vi ̸=w(p−1)t

dss(v) = 2[µSS(v1w11) + · · ·+ µSS(v1w1) + µSS(v2w21)

+ µSS(v2w22) + · · ·+ µSS(v2w2t) + µSS(v(p−1)w(p−1)1)

+ µSS(v(p−1)w(p−1)2) + · · ·+ µSS(v(p−1)w(p−1)t)

+ µSS(vpw(p−1)1) + · · ·+ µSS(vpw(p−1)t)].

Therefore, ∑
(vi ̸=w(p−1)t)

dss(v) = 2
∑

(vi ̸=w(p−1)t)

µSS(viw(p−1)t).
□

Corollary 5.7. The sum of the degrees of all the vertices is equal to twice the
size of the fuzzy graph.

Proof. Considering the fuzzy super subdivided graph SSf (G). The sum of the
degree of the membership value of vertices vi is

∑
(vi ̸=w(p−1)t)

dss(vi). By the

definition of the size of the super subdivided fuzzy graph,

SSS(G) =
∑

(vi ̸=w(p−1)t)

µSS(viw(p−1)t).

From the above theorem,∑
(vi ̸=w(p−1)t)

dss(v) = 2
∑

(vi ̸=w(p−1)t)

µSS(viw(p−1)t).

Therefore, we have ∑
(vi ̸=w(p−1)t)

dss(vi) = 2SSS(G).
□

Proposition 5.8. In every SSf (G), the order is greater than the size of the
graph.

Proof. Let SSf (G)=(VSS , ESS , σSS , µSS) be the fuzzy super subdivided graph.
By the definition of the order and size of the fuzzy super subdivided graph, the
order is

OSS(G) =
∑

(vi ̸=w(p−1)t)

σSS(vi)

and the size is
SSS(G) =

∑
(vi ̸=w(p−1)t)

µSS(vi, w(p−1)t).



812 J. S. MOHAN, S. NOEIAGHDAM, L. SAVARIMUTHU, AND B. THANGAVELU

Considering that the membership value of vertices is less than or equal to the
membership value of edges, we have:∑

(vi ̸=w(p−1)t)

σSS(vi) ≥
∑

(vi ̸=w(p−1)t)

µSS(vi, w(p−1)t).

Hence,
OSS(G) ≥ SSS(G). □

6. Complete fuzzy super subdivided graph

Definition 6.1. The fuzzy super subdivided graph SSf (G) is said to be a
complete fuzzy super subdivided graph Cf (G) if

µSS(viw(pt)) = min{σSS(vi), σSS(w(pt)}
where vi ∈ V and wpt ∈ Vss for 1 ≤ i ≤ , 1 ≤ p ≤ q and 1 ≤ t ≤ m.

Example 6.2. Consider the complete fuzzy super subdivided triangle (k3)
graph SSf (k3) = (VSS , ESS , σSS , µSS) in Figure 5.

Figure 5. Complete Fuzzy super subdivided triangle SSf (k3)
for k2,2

The edge membership values for the graph are assigned as follows (by Defi-
nition 3.1 of SSf (G))

min{v1(0.2), w11(0.4)} = e11(0.2);min{v2(0.3), w11(0.4)} = e12(0.3)

min{v1(0.2), w12(0.5)} = e13(0.2);min{v2(0.3), w12(0.5)} = e14(0.3)

min{v2(0.3), w21(0.6)} = e21(0.3);min{v3(0.5), w21(0.6)} = e22(0.5)

min{v2(0.3), w23(0.7)} = e23(0.3);min{v3(0.5), w22(0.7)} = e24(0.5)

min{v1(0.2), w31(0.7)} = e31(0.2);min{v3(0.5), w31(0.7)} = e32(0.5)
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min{v1(0.2), w32(0.8)} = e33(0.2);min{v3(0.5), w32(0.8)} = e34(0.5)

These edge values satisfy the condition of complete fuzzy super subdivided
graph.

Note 6.1. As all complete graphs are cycle, the super subdivided vertices of
the complete fuzzy super subdivided graph is taken as wpt for 1 ≤ p ≤ q and
1 ≤ t ≤ m.

Theorem 6.3. Every fuzzy super subdivided graph is a complete fuzzy super
subdivided graph but the converse need not be true.

Proof. Let SSf (G) = (VSS , ESS , σSS , µSS) be the fuzzy super subdivided graph
where VSS and ESS are super subdivided vertices and edges. To prove: SSf (G)
is a complete fuzzy super subdivided graph. By the definition of SSf (G) ev-
ery edge in G is replaced with the complete bipartite graph k(2,m) for m > 1.
This implies that there is an edge between each pair of vertices, forming a
fully connected graph without loops. According to condition (ii) of Definition
3.1, µSS(viw(p−1)t) = σSS(vi)∧σSS(w(p−1)t) where w(p−1)t ∈ Vss, the equality
condition holds for all pairs of vertices in the graph, establishing that the fuzzy
super subdivided graph is a complete fuzzy graph.

Conversely, consider the complete fuzzy super subdivided graph Cf (G), to
prove it to be the fuzzy super subdivided graph. In the given Cf (G), the
condition

µSS(viw(p−1)t) = σSS(vi) ∧ σSS(w(p−1)t)

already exists.
Case (i). Suppose the given Cf (G) satisfies the condition

σSS(vi) < σSS(w(p−1)t) > σSS(vj)

of Definition 3.1 of SSf (G), then the assumed complete fuzzy super subdivided
graph is indeed a fuzzy super subdivided graph.

Case (ii). Suppose the given Cf (G) does not satisfy the condition

σSS(vi) < σSS(w(p−1)t) > σSS(vj)

of Definition 3.1 of SSf (G), in this case, the assumed complete fuzzy super
subdivided graph is not a fuzzy super subdivided graph. □

7. Application: Analysis of the infection’s growth in urine

Mathematics applied to medical sciences and the use of mathematical models
by medical researchers are gaining benefits to both sectors [19]. Fuzzy super
subdivision, finds novel applications in medical research, particularly in urine
culture testing.

One of the most common diagnostic procedures conducted globally is Uri-
nary microbiological culture [9,17,28]. The concept of fuzzy super subdivision
model can be implemented in the culture test. In this application, the fuzzy
super subdivision graph serves as a dynamic and detailed representation of
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bacterial colonies and their interactions in a urine culture. This model cap-
tures the temporal aspects of bacterial growth, allowing for the observation of
changes in colony development.

Bacterial growth can be promoted by the nutrient media, including blood
agar (SBA), cysteine lactose electrolyte deficient medium (CLED), Eosin
methylene blue (EMB), and MacConkey (MAC) [24, 26]. Selective media like
EMB and MAC are essential for fostering specific growth conditions. Once the
growth-promoting substances and nutrient media are added into the system,
bacteria or yeast within the culture exhibit distinct growth patterns.

In this model, urine samples are pictured as fuzzy graphs. The culture
medium and the urine sample are represented as the vertices and edges of the
fuzzy graph. By utilizing the nutrients in the culture medium, the growth
of bacteria in the urine can be visualized and envisioned as fuzzy super sub-
division. The membership values assigned to super subdivided vertices is the
concentration of nutrients in the medium, while the membership values of super
subdivided edges reflect the rate at which bacteria proliferate in the medium,
forming colonies. The parameter “m” signifies the number of copies in the
super subdivision, representing the count of bacterial colonies. Notably, the
fuzzy super subdivision model employs unique pattern to prevent overlapping
growth, providing non-overlapping and clearly defined bacterial colonies.

(a) Zig-Zag pattern in the
culture medium

(b) Illustration of analysis of
fuzzy super subdivision model
in bacterial colony growth
SSf (G)

Figure 6. Illustration of visual and analytical representation
of bacterial growth

In this experimental setup, we employ agar plate as a medium for bacterial
growth. The culture medium in the agar plate is considered as vertices A, B, C,
D, E and F. A loop with the urine sample is used to create a zigzag streaking
pattern, which forms a fuzzy graph. The streaking pattern represents the iso-
lated bacterial distribution. As bacteria in the sample utilize the nutrients in
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the medium, they initiate a super subdivision process. This process results in
the formation of distinct colonies. The nutrient concentration in the medium
evaluates the membership values of the super subdivided vertices and the super
subdivided edges indicate the rate at which bacteria propagate in the medium,
forming colonies. The increasing colony count of bacteria is represented by G,
H, I, J, K, L, M, N, O and P, illustrating different stages of growth. Complex
relationships within a urine culture can be represented and analyzed by fuzzy
super subdivision model. This model allows us to produce visual and ana-
lytical representation of bacterial growth and interactions by observing their
characteristics.

Figure 7. Graphical representation of phases of the bacterial
growth of a fuzzy super subdivision model

By the above representation of colonial count of bacteria, the graph repre-
sents the rate at which the bacteria grow in each phase. The growth phases of
bacterial colonies, including lag phase, logarithmic growth phase, and decline
phase, can be represented (Table 1) as dynamic changes in the membership val-
ues over time. This adds a temporal dimension to the fuzzy super subdivision
graph.
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Table 1. Range of the membership values of bacterial
colonies

Growth phases
of bacterial
colonies

Number of
Colonies

Growth Stages

Lag phase 0.1 – 0.3 Little or no visible
growth

Logarithmic phase 0.6 – 1.0 Rapid bacterial
multiplication

Stationary phase 0.5 – 0.3 Relatively stable
bacterial
population

Decline phase 0.3 – 0.1 Decrease in the
bacterial

population.

The edge membership values are calculated in Table 2 below based on the
rate at which the bacteria grow in the medium.

Table 2. Membership values of vertices and edges

Membership
values of vertices

Phases of the
growth

Rate of the
bacterial colony
growth (Edge
membership

values)

0.1

Lag Phase

0.1

0.2 0.1

0.3 0.2

0.4

Logarithmic Phase

0.6

0.5 0.9

0.6 1.0

0.7 0.8

0.8
Stationary Phase

0.5

0.9 0.2

1.0 Decline Phase 0.1
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The information extracted from the model provides valuable insights for
healthcare providers. Further integration with advanced diagnostic technolo-
gies can enhance the capabilities of fuzzy super subdivision in providing diag-
nostic insights. Therefore, with the analysis given above, using the fuzzy super
subdivision model, the fastest probability and the infection level in the urine
is stated.

8. Conclusion

In this paper, we have examined the concept of fuzzy super subdivision graph
and its application in representing uncertain complex systems. Graph theory
is extended with fuzzy graphs to address the vagueness of real-world problems.

In our discussion, we have established key properties and findings of fuzzy
super subdivision graphs. We have demonstrated that every pair of adjacent
vertices in a fuzzy graph becomes non-adjacent in its fuzzy super subdivi-
sion. Further, we have extended our study on super subdivision complete
fuzzy graphs. The degree, order and size of the fuzzy super subdivision graph
are analyzed and compared to gain insights on the structural properties of
fuzzy super subdivision graphs. Furthermore, the application of the fuzzy su-
per subdivision model is illustrated as infection growth analysis in the medical
diagnosis domain. With fuzzy super subdivision models, we are able to inter-
pret urine samples accurately, considering the complex and uncertain nature
of urine analysis which improves decision-making processes.

In summary, fuzzy super subdivision graphs are newly introduced to advance
the study of fuzzy graph theory, providing a deep and better understanding
of complex structures and fuzzy graphs. This research also paves the way
to investigate further and establish concepts on families of super subdivision
graphs in fuzzy.
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