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Abstract. For a simple, undirected graph G = (V, E), a perfect Roman dominating

function (PRDF) f : V → {0, 1, 2} has the property that, every vertex u with f(u) = 0

is adjacent to exactly one vertex v for which f(v) = 2. The weight of a PRDF is the

sum f(V ) =
∑

v∈V f(v). The minimum weight of a PRDF is called the perfect Roman

domination number, denoted by γP
R (G). Given a graph G and a positive integer k, the

PRDF problem is to check whether G has a perfect Roman dominating function of weight

at most k. In this paper, we first investigate the complexity of PRDF problem for some

subclasses of bipartite graphs namely, star convex bipartite graphs and comb convex bi-

partite graphs. Then we show that PRDF problem is linear time solvable for bounded

tree-width graphs, chain graphs and threshold graphs, a subclass of split graphs.

1. Introduction

Let G = (V, E) be a simple, undirected and connected graph with no isolated
vertices. For a vertex v ∈ V , the open neighborhood of v in G is NG(v) = {u | u ∈ V ,
(u, v) ∈ E} and the closed neighborhood of v is defined as NG[v] = NG(v) ∪ {v}.
The degree deg(v) of a vertex v is |NG(v)|. The maximum degree of a graph G,
denoted by ∆ and minimum degree of a graph, denoted by δ are the maximum and
minimum degree of its vertices. An induced subgraph is a graph formed from a sub-
set D of vertices of G and all of the edges in G connecting pairs of vertices in that
subset, denoted by 〈D〉. A clique is a subset of vertices of G such that every two
distinct vertices in the subset are adjacent. An independent set is a set of vertices
in which no two vertices are adjacent. A vertex v of G is said to be a pendant vertex
if deg(v) = 1. A vertex v is called isolated vertex if deg(v) = 0. A bipartite graph
G = (X,Y,E) is called tree convex if there exists a tree T = (X,F ) such that, for
each y in Y , the neighbors of y induce a subtree in T . When T is a star (comb),
G is called star (comb) convex bipartite graph [6]. For undefined terminology and
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notations we refer the reader to [3].
A vertex v in G dominates the vertices of its closed neighborhood. A set of

vertices S ⊆ V is a dominating set (DS) in G if for every vertex u ∈ V \ S, there
exists at least one vertex v ∈ S such that (u, v) ∈ E, i.e., NG[S] = V . A vertex
u ∈ V \ S is said to be undominated if NG(u) ∩ S = ∅. The domination number is
the minimum cardinality of a dominating set in G and is denoted by γ(G) [15].

Roman domination has been introduced by Cockayne et al. in [4]. A function
f : V → {0, 1, 2} is a Roman Dominating Function (RDF) on G if every vertex
u ∈ V for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. In
this case, we say that u is Roman dominated by v or v Roman dominates u. The
weight of an RDF is the value f(V ) =

∑
u∈V f(u). The Roman domination number

is the minimum weight of an RDF on G and is denoted by γR(G). The literature
on Roman domination in graphs has been surveyed in [10, 12].

The concept of perfect Roman domination was introduced in 2018 by Henning
et al. in [8]. A function f : V → {0, 1, 2} is a perfect Roman Dominating Function
(PRDF) on G, if every vertex u ∈ V for which f(u) = 0 is adjacent to exactly one
vertex v for which f(v) = 2. The weight of a PRDF is the value f(V ) =

∑
u∈V f(u).

The perfect Roman domination number is the minimum weight of a PRDF on G and
is denoted by γPR (G). The perfect Roman domination has been studied in [14, 9].

Given a graph G and a positive integer k, the PRDF problem is to check whether
G has a perfect Roman dominating function of weight at most k. Banerjee et al. in
[14] proved that the PRDF problem is NP-complete for planar graphs, bipartite
graphs and chordal graphs. In this paper we strengthen the result for bipartite
graph by showing that this problem remains NP-complete for two subclasses of
bipartite graphs, i.e., star convex and comb convex bipartite graphs.

2. Complexity Results

In this section, we show that the PRDF problem is NP-complete for star convex
bipartite graphs and comb convex bipartite graphs by giving a polynomial time re-
duction from a well-known NP-complete problem, Exact-3-Cover (X3C)[7], which
is defined as follows.
EXACT-3-COVER (X3C)
INSTANCE : A finite set X with | X | = 3q and a collection C of three-element
subsets of X.
QUESTION : Is there a subcollection C ′ of C such that every element of X ap-
pears in exactly one member of C ′?

The decision version of perfect Roman dominating function problem is defined as
follows.
PERFECT ROMAN DOMINATING FUNCTION PROBLEM (PRDFP)
INSTANCE : A simple, undirected graph G = (V,E) and a positive integer
k ≤| V |.
QUESTION : Does G have a perfect Roman dominating function of weight
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Figure 1: Star Graph Figure 2: Construction of a star con-
vex bipartite graph from an instance
of X3C

at most k?

Theorem 2.1. PRDFP is NP-complete for star convex bipartite graphs.

Proof. Given any function f : V → {0, 1, 2} and a positive integer k ≤ |V |, we
can check in polynomial time whether f(V ) ≤ k and for every vertex u ∈ V with
f(u) = 0, there is exactly one vertex v ∈ NG(u) such that f(v) = 2. So the PRDFP
is a member of NP. We transform an instance of X3C, where X = { x1, x2, . . ., x3q
} and C = { c1, c2, . . ., ct }, to an instance of PRDFP as follows.

Create vertices xi for each xi ∈ X, ci, ai for each ci ∈ C and also create vertices
a, b, c and d. Add edges aici for each ci and cjxi if xi ∈ cj . Next, add edges xia
for each xi, ba, bc and bd. Let A = {ci : 1 ≤ i ≤ t}∪{a, c, d}, B = {xi : 1 ≤ i ≤ 3q}
{ai : 1 ≤ i ≤ t} ∪ {b}. The set A induces a star with vertex a as central vertex as
shown in the Figure 1. From the Figure 2, it is clear that the graph constructed
is a star convex bipartite graph since the neighbors of each element in B induce a
subtree of star, where |V | = 2t+ 3q + 4 and |E| = 3q + 4t+ 3. Next, we show that
X3C has a solution if and only if G has a PRDF with weight at most 2t + 2. Let
k = 2t+ 2.

Suppose C ′ is a solution for X3C with |C ′| = q. We construct a perfect Roman
dominating function f on G as follows.

(2.1) f(v) =

{
2, if v ∈ C ′ or v = a

0, otherwise
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Clearly, f(V ) ≤ 2q + 2 = k.
Conversely, suppose that G has a perfect Roman dominating function g with

weight at most k. Clearly, g(a) + g(a1) + g(a2) + g(a3) ≥ 2. Without loss of
generality, let g(a) = 2 and g(a1) = g(a2) = g(a3) = 0. Since (a, cj) ∈ E, it follows
that each vertex cj may be assigned the value 0.

Claim 1.1. If g(V ) = k then for each xi ∈ X, g(xi) = 0.

Proof. (Proof by contradiction) Assume g(V ) = k and there exist some xi’s such
that g(xi) 6= 0. Let m = |{xi : g(xi) 6= 0}|. The number of xi’s with g(xi) = 0 is
3q−m. Since g is a PRDF, each xi with g(xi) = 0 should have exactly one neighbor
cj with g(cj) = 2. So the number of cj ’s required with g(cj) = 2 is d 3q−m3 e. Hence

g(V ) = 2 + m + 2d 3q−m3 e = 2 + 2q + m
3 , which is greater than k, a contradiction.

Therefore for each xi ∈ X, g(xi) = 0. 2

Since each ci has exactly three neighbors in X, clearly, there exist q number
of ci’s with weight 2 such that

(⋃
g(ci)=2NG(ci)

)
∩ X = X. Consequently,

C ′ = {ci : g(ci) = 2} is an exact cover for C. 2

Theorem 2.2. PRDFP is NP-complete for comb convex bipartite graphs.

Proof. Clearly, PRDFP is a member of NP. We transform an instance of X3C,
where X = { x1, x2, . . ., x3q } and C = { c1, c2, . . ., ct }, to an instance of PRDFP
as follows.

Create vertices xi for each xi ∈ X, ci, ai, c
′
i for each ci ∈ C and also create

vertices a, a′ and b. Add edges aici for each ci and cjxi if xi ∈ cj . Next add edges
c′jb for each c′j , ba and ba′. Also add edges by joining each c′j to every xi. Let
A = {a, a′} ∪ {ci, c′i : 1 ≤ i ≤ t} and B = V \ A. The set A induces a comb with
elements {c′i : 1 ≤ i ≤ t } ∪ {a′} as backbone and {ci : 1 ≤ i ≤ t } ∪ {a} as teeth
as shown in the Figure 3. From the Figure 4, it is clear that the graph constructed
is a comb convex bipartite graph since the neighbors of each element in B induce a
subtree of the comb, where |V | = 3t+ 3q+ 3 and |E| = 3qt+ 5t+ 2. Next we show
that, X3C has a solution if and only if G has a PRDF with weight at most 2t+ 2.

Suppose C ′ is a solution for X3C with |C ′| = q. We construct a perfect Roman
dominating function f on G as follows.

(2.2) f(v) =

{
2, if v ∈ {ci : ci ∈ C ′} ∪ {ai : ci /∈ C ′} or v = b

0, otherwise

Clearly, f(V ) ≤ 2t+ 2.
Conversely, suppose that G has a perfect Roman dominating function g with

weight at most 2t+ 2. Clearly, for each i, g(ai) + g(ci) ≥ 2, these make the size at
least 2t, and g(b) + g(a) + g(a′) ≥ 2. Without loss of generality, g(b) = 2, g(a) = 0,
g(a′) = 0, g(xi) = 0 where 1 ≤ i ≤ 3q and g(c′j) = 0 where 1 ≤ j ≤ t. Since g
is a perfect Roman dominating function with weight 2t + 2 or less, the ci vertices
with g(ci) = 2 should be Roman dominating over all the xj vertices in G. Then
C ′ = {ci : g(ci) = 2} is an exact cover for C; because if some vertex xi is not
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Figure 3: Comb Graph
Figure 4: Construction of a comb con-
vex bipartite graph from an instance
of X3C

covered exactly once in C ′, the vertex xi would not be Roman dominated exactly
once in G and g would not be a PRDF. 2

Now, the following result is immediate from Theorem 2.1 and Theorem 2.2.

Theorem 2.3. PRDFP is NP-complete for tree convex bipartite graphs.

3. Threshold Graphs

In this section, we determine the perfect Roman domination number of threshold
graph.

Definition 3.1. A graph G = (V,E) is called a threshold graph if there is a real
number T and a real number w(v) for every v ∈ V such that a set S ⊆ V is
independent if and only if

∑
v∈S w(S) ≤ T .

Although several characterizations defined for threshold graphs, We use the
following characterization of threshold graphs given in [11] to prove that the perfect
Roman domination number can be computed in linear time for threshold graphs.

A graph G = (V,E) is a threshold graph if and only if it is a split graph and, for
split partition (C, I) of V where C is a clique and I is an independent set, there is
an ordering {x1, x2, . . . , xp} of vertices of C such that NG[x1] ⊆ NG[x2] ⊆ NG[x3] ⊆
. . . ⊆ NG[xp], and there is an ordering {y1, y2, . . . , yq} of the vertices of I such that
NG(y1) ⊇ NG(y2) ⊇ NG(y3) ⊇ . . . ⊇ NG(yq). If |C| = 0 then, weight 1 is assigned
for each vertex, clearly, γPR (G) = |V |. If |C| > 0 then the following theorem holds.
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Theorem 3.2. Let G be a threshold graph. Then γPR (G) = k + 1, where k is the
number of connected components in G.

Proof. Let G be a threshold graph with p clique vertices such that NG[x1] ⊆
NG[x2] ⊆ NG[x3] ⊆ . . . ⊆ NG[xp]. Now, define a function f : V → {0, 1, 2} as
follows.

(3.1) f(v) =


1, if deg(v) = 0

2, if v = xp

0, otherwise

Clearly, f is a PRDF and γPR (G) ≤ k + 1. From the definition of PRDF, it follows
that γPR (G) ≥ k + 1. Therefore γPR (G) = k + 1. 2

Now, the following result is immediate from Theorem 3.1.

Theorem 3.3. PRDF problem can be solvable in linear time for threshold graphs.

Proof. Since the ordering of the vertices of the clique and the number of connected
components in a threshold graph can be determined in linear time [2, 11], the result
follows. 2

4. Chain Graphs

In this section, we propose a method to compute the perfect Roman domination
number of a chain graph in linear time. A bipartite graph G = (X,Y,E) is called
a chain graph if the neighborhoods of the vertices of X form a chain, that is,
the vertices of X can be linearly ordered, say x1, x2, ..., xp, such that NG(x1) ⊆
NG(x2) ⊆ ... ⊆ NG(xp). If G = (X,Y,E) is a chain graph, then the neighborhoods
of the vertices of Y also form a chain. An ordering α = (x1, x2, . . . , xp, y1, y2, . . . , yq)
of X ∪ Y is called a chain ordering if NG(x1) ⊆ NG(x2) ⊆ ... ⊆ NG(xp) and
NG(y1) ⊇ NG(y2) ⊇ ... ⊇ NG(yq). Every chain graph admits a chain ordering [5].
The following proposition is stated in [4].

Proposition 4.1. Let G = Km1,...,mn
be the complete n-bipartite graph with m1 ≤

m2 ≤ ... ≤ mn.

(a) If m1 ≥ 3 then γR(G) = 4.

(b) If m1 = 2 then γR(G) = 3.

(c) If m1 = 1 then γR(G) = 2.

If G(X,Y,E) is a complete bipartite graph then, clearly, γR(G) = γPR (G) i.e.,
γPR (G) is obtained directly from Proposition 4.1. Otherwise, the following theorem
holds.
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Theorem 4.2. Let G(X,Y,E)(� Kr,s) be a chain graph. Then,

(4.1) γPR (G) =

{
3, if |X| = 2 or |Y | = 2

4, otherwise

Proof. If G ∼= K1 then γPR (G) = 1. Otherwise, let G(X,Y,E) be a chain graph with
|X| = p and |Y | = q. Now, define a function f : V → {0, 1, 2} as follows.

Case (1) : |X| = 2 and |Y | = 2 then f(v) =


2, if v = y1

1, if v = y2

0, otherwise

Case (2) : |X| = 2 and |Y | 6= 2 then f(v) =


2, if v = x2

1, if v = x1

0, otherwise

Case (3) : |X| 6= 2 and |Y | = 2 then same condition holds as in Case (1).
Clearly, f is a PRDF and γPR (G) ≤ 3. From the definition of PRDF, it follows

that γPR (G) ≥ 3. Therefore γPR (G) = 3.

Case (4) : |X| 6= 2 and |Y | 6= 2 then f(v) =

{
2, if v ∈ {xp, y1}
0, otherwise

Clearly, f is a PRDF and γPR (G) ≤ 4. Since p ≥ 2 and q ≥ 2, in any PRDF of
G, f(X) ≥ 2 and f(Y ) ≥ 2. Therefore γPR (G) ≥ 4. Hence γPR (G) = 4. 2

If the chain graphG is disconnected with k connected componentsG1, G2, . . . , Gk

then it is easy to verify that γPR (G) =
∑k

i=1 γ
P
R (Gi).

Now, the following result is immediate from Theorem 4.2.

Theorem 4.3. PRDF problem can be solvable in linear time for chain graphs.

Proof. Since the chain ordering and the connected components can be computed in
linear time [2, 13], the result follows. 2

5. Bounded Tree-width Graphs

Let G be a graph, T be a tree and v be a family of vertex sets Vt ⊆ V (G)
indexed by the vertices t of T . The pair (T, v ) is called a tree-decomposition of
G if it satisfies the following three conditions: (i) V (G) =

⋃
t∈V (T ) Vt, (ii) for every

edge e ∈ E(G) there exists a t ∈ V (T ) such that both ends of e lie in Vt, (iii)
Vt1 ∩ Vt3 ⊆ Vt2 whenever t1, t2, t3 ∈ V (T ) and t2 is on the path in T from t1 to t3.
The width of (T, v ) is the number max{|Vt|−1 : t ∈ T}, and the tree-width tw(G) of
G is the minimum width of any tree-decomposition of G. By Courcelle’s Thoerem, it
is well known that every graph problem that can be described by counting monadic
second-order logic (CMSOL) can be solved in linear-time in graphs of bounded tree-
width, given a tree decomposition as input [1]. We show that PRDF problem can
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be expressed in CMSOL.

Theorem 5.1.([Courcelle’s Theorem][1]) Let P be a graph property expressible in
CMSOL and k be a constant. Then, for any graph G of tree-width at most k, it can
be checked in linear-time whether G has property P .

Theorem 5.2. Given a graph G and a positive integer k, PRDF can be expressed
in CMSOL.

Proof. Let f = (V0, V1, V2) be a function f : V → {0, 1, 2} on a graph G, where
Vi = {v|f(v) = i} for i ∈ {0, 1, 2}. The CMSOL formula for the PRDF problem is
expressed as follows.

Perfect Rom Dom(V ) = (f(V ) ≤ k)∧∃V0, V1, V2,∀p((p ∈ V1)∨(p ∈ V2)∨(p ∈
V0 ∧ ∃r(r ∈ V2 ∧ adj(p, r)) ∧ ¬(∃s, s ∈ V2 ∧ s 6= r ∧ adj(p, s))),

where adj(p, q) is the binary adjacency relation which holds if and only if, p, q are
two adjacent vertices of G. 2

Now, the following result is immediate from Theorem 5.1 and Theorem 5.2.

Theorem 5.3. PRDF problem can be solvable in linear time for bounded tree-width
graphs.

6. Conclusion

In this paper, we have shown that the decision problem associated with γPR (G)
is NP-complete for some subclasses of bipartite graphs. Next, we have shown that
PRDF problem is linear time solvable for bounded tree-width graphs, threshold
graphs and chain graphs. Investigating the algorithmic complexity of this problem
for other subclasses of bipartite graphs and chordal graphs remains open.
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