• 제목/요약/키워드: combinatorial number theory

검색결과 10건 처리시간 0.021초

ON THE MULTI-DIMENSIONAL PARTITIONS OF SMALL INTEGERS

  • Kim, Jun-Kyo
    • East Asian mathematical journal
    • /
    • 제28권1호
    • /
    • pp.101-107
    • /
    • 2012
  • For each dimension exceeds 1, determining the number of multi-dimensional partitions of a positive integer is an open question in combinatorial number theory. For n ${\leq}$ 14 and d ${\geq}$ 1 we derive a formula for the function ${\wp}_d(n)$ where ${\wp}_d(n)$ denotes the number of partitions of n arranged on a d-dimensional space. We also give an another definition of the d-dimensional partitions using the union of finite number of divisor sets of integers.

Numerical analysis of quantization-based optimization

  • Jinwuk Seok;Chang Sik Cho
    • ETRI Journal
    • /
    • 제46권3호
    • /
    • pp.367-378
    • /
    • 2024
  • We propose a number-theory-based quantized mathematical optimization scheme for various NP-hard and similar problems. Conventional global optimization schemes, such as simulated and quantum annealing, assume stochastic properties that require multiple attempts. Although our quantization-based optimization proposal also depends on stochastic features (i.e., the white-noise hypothesis), it provides a more reliable optimization performance. Our numerical analysis equates quantization-based optimization to quantum annealing, and its quantization property effectively provides global optimization by decreasing the measure of the level sets associated with the objective function. Consequently, the proposed combinatorial optimization method allows the removal of the acceptance probability used in conventional heuristic algorithms to provide a more effective optimization. Numerical experiments show that the proposed algorithm determines the global optimum in less operational time than conventional schemes.

퍼지 조립라인밸런싱 문제 해결을 위한 주노드법에 기초한 휴리스틱 절차 개발 (The development of critical node method based heuristic procedure for Solving fuzzy assembly-line balancing problem)

  • 이상완;박병주
    • 산업경영시스템학회지
    • /
    • 제22권51호
    • /
    • pp.189-197
    • /
    • 1999
  • Assembly line balancing problem is known as one of difficult combinatorial optimization problems. This problem has been solved with linear programming, dynamic programming approaches. but unfortunately these approaches do not lead to efficient algorithms. Recently, genetic algorithm has been recognized as an efficient procedure for solving hard combinatorial optimization problems, but has a defect that requires long-run time and computational complexties to find the solution. For this reason, we adapt a new method called the Critical Node Method that is intuitive, easy to understand, simple for implementation. Fuzzy set theory is frequently used to represent uncertainty of information. In this paper, to treat the data of real world problems we use a fuzzy number to represent the duration and Critical Node Method based heuristic procedure is developed for solving fuzzy assembly line balancing problem.

  • PDF

경사지 경지정리지구의 등고선 구획 최적설계 (Optimal Design of Contour-Lined Plots for Land Consolidation Planning in Sloping Areas)

  • 강민구;박승우;강문성;김상민
    • 한국농공학회지
    • /
    • 제45권6호
    • /
    • pp.83-95
    • /
    • 2003
  • In this study, a new concept in a paddy consolidation project is introduced in that curved parallel terracing with contour-lined layout is adopted in sloping areas instead of conventional rectangular terracing. The contoured layout reduces earth-moving considerably compared to rectangular methods in consolidation projects. The objective of the paper is to develop a combinatorial optimization model using the network theory for the design of contour-lined plots which minimizes the volume of earth moving. The results showed that as the length of short side of plot is longer or the land slope is steeper, the volume of earth moving for land leveling increases. The developed optimization model is applied for three consolidated districts and the resulting optimal earth moving is compared with the volume of earth from the conventional method. The shorter is the minimum length of short side of a polt with increases the number of plots, the less is the volume of earth. As the minimum length of short side is 20 m for efficient field works by farm machinery, the volume of earth moving of optimal plot is less by 21.0∼27.1 % than that of the conventional consolidated plots.

DEGENERATE POLYEXPONENTIAL FUNCTIONS AND POLY-EULER POLYNOMIALS

  • Kurt, Burak
    • 대한수학회논문집
    • /
    • 제36권1호
    • /
    • pp.19-26
    • /
    • 2021
  • Degenerate versions of the special polynomials and numbers since they have many applications in analytic number theory, combinatorial analysis and p-adic analysis. In this paper, we define the degenerate poly-Euler numbers and polynomials arising from the modified polyexponential functions. We derive explicit relations for these numbers and polynomials. Also, we obtain some identities involving these polynomials and some other special numbers and polynomials.

연관규칙 기반 소규모 건설현장 사망재해 다중요인 분석 (Identification of Combinatorial Factors Affecting Fatal Accidents in Small Construction Sites: Association Rule Analysis)

  • 이강호;이찬식;구충완;김태완
    • 한국건설관리학회논문집
    • /
    • 제21권4호
    • /
    • pp.90-99
    • /
    • 2020
  • 건설 산업은 중대 재해가 지속적으로 발생하고 있는 실정이다. 이러한 이유로는 많은 건설 현장의 작업이 고소작업과 옥외작업의 악천후의 작업과 같은 위험한 조건에서 수행되기 때문에 다른 산업에 비해 재해의 빈도와 강도가 심각하고, 이로 인해 안전사고에 노출된다. 소규모 건설현장은 사망재해의 위험이 매우 크지만 소규모 건설현장의 사망재해로 이어지는 다중 요인의 연구는 부족한 것으로 드러났다. 따라서 건설업의 사망재해를 줄이기 위해 본 연구에서 소규모 건설현장에서 발생한 1,438건의 사망재해 사례를 분석하고, 소규모 건설현장에서 치명적인 사고를 일으키는 10가지 요인으로 연관규칙 분석을 수행하였으며, 연관규칙 분석으로 나타난 결과를 기초로하여, 본 연구는 소규모 건설현장의 사망재해를 줄이기 위한 대책에 대해서도 논의하였다. 연구 결과에 대해서는 결과에 동의하는 전문가들에게 설명하여 인터뷰 형식으로 진행하였다. 본 연구는 소규모 건설현장 근로자를 위한 안전 정책 및 안전관리 이론에 기여 할 수 있다.

REGULAR MAPS-COMBINATORIAL OBJECTS RELATING DIFFERENT FIELDS OF MATHEMATICS

  • Nedela, Roman
    • 대한수학회지
    • /
    • 제38권5호
    • /
    • pp.1069-1105
    • /
    • 2001
  • Regular maps and hypermaps are cellular decompositions of closed surfaces exhibiting the highest possible number of symmetries. The five Platonic solids present the most familar examples of regular maps. The gret dodecahedron, a 5-valent pentagonal regular map on the surface of genus 5 discovered by Kepler, is probably the first known non-spherical regular map. Modern history of regular maps goes back at least to Klein (1878) who described in [59] a regular map of type (3, 7) on the orientable surface of genus 3. In its early times, the study of regular maps was closely connected with group theory as one can see in Burnside’s famous monograph [19], and more recently in Coxeter’s and Moser’s book [25] (Chapter 8). The present-time interest in regular maps extends to their connection to Dyck\`s triangle groups, Riemann surfaces, algebraic curves, Galois groups and other areas, Many of these links are nicely surveyed in the recent papers of Jones [55] and Jones and Singerman [54]. The presented survey paper is based on the talk given by the author at the conference “Mathematics in the New Millenium”held in Seoul, October 2000. The idea was, on one hand side, to show the relationship of (regular) maps and hypermaps to the above mentioned fields of mathematics. On the other hand, we wanted to stress some ideas and results that are important for understanding of the nature of these interesting mathematical objects.

  • PDF

그룹검사 문제에 대한 성능 하한치 (A Lower Bound for Performance of Group Testing Problems)

  • 성진택
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.572-578
    • /
    • 2018
  • 본 논문은 조합 문제의 하나로써 그룹검사(Group Testing)의 성능 하한치를 유도한다. 그룹검사는 2차 세계대전 동안 군인들의 매독 감염을 검진하기 위해 시작되었고 지금까지 오랫동안 학문적 기초를 마련하였다. 최근 들어 그룹검사의 활용가치가 증대되어 재발견됨으로써 학계에서 큰 관심을 받고 있다. 그룹검사는 다수의 샘플 중에서 극소수의 결함 샘플을 찾는 문제와 동일하며, 이것은 압축센싱(Compressed Sensing)의 선형 역문제(inverse problem)와 유사하다. 본 논문에서는 그룹검사가 무엇인지 살펴보고 그룹검사의 관련 연구내용을 알아본다. 정보이론에서 사용한 조건부 엔트로피와 에러율 간의 관계를 밝히는 정리를 이용하여 결함 샘플을 찾기 위해 필요한 검사 수에 대한 최소 에러율의 경계값을 도출할 뿐만 아니라 기존 연구와 어떠한 차이점이 있는지 살펴본다.

케일리 공식의 네 가지 증명 (Four proofs of the Cayley formula)

  • 서승현;권석일;홍진곤
    • 한국수학사학회지
    • /
    • 제21권3호
    • /
    • pp.127-142
    • /
    • 2008
  • 수학의 역사에서는 이미 발견되어 논증된 정리를 새로운 방법으로 공략함으로써 그 정리의 깊은 의미를 드러내는 작업의 기록을 쉽게 찾을 수 있다. 이 연구는 직관적으로 비교적 이해하기 쉬운 소재인 수형도를 대상으로 하여, 꼭지점의 집합이 결정되었을 때 수형도의 개수를 결정하여 주는 케일리 공식(Cayley formula)의 증명에 대한 서로 다른 네 가지 접근방법을 소개하는 것을 목적으로 한다. 네 가지 증명은 수형도의 성질로부터 유도된 재귀적 관계식을 이용한 케일리의 증명에서부터 특정한 수학적 대상과 수형도 사이의 일대일대응 관계에 주목하는 나머지 세 가지 증명으로 이루어진다. 특히, 마지막 증명은 순수한 수학적 작업이 다른 분야에 강력한 도구를 제공하는 전형적인 예를 보여준다.

  • PDF

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF