Four proofs of the Cayley formula

케일리 공식의 네 가지 증명

  • Seo, Seung-Hyun (Department of Mathematics Education, Kangwon National University) ;
  • Kwon, Seok-Il (Department of Mathematics Education, Gyeongin National University of Education) ;
  • Hong, Jin-Kon (Department of Mathematics Education, Konkuk University)
  • Published : 2008.08.31

Abstract

In this paper, we introduce four different approaches of proving Cayley formula, which counts the number of trees(acyclic connected simple graphs). The first proof was done by Cayley using recursive formulas. On the other hands the core idea of the other three proofs is the bijective method-find an one to one correspondence between the set of trees and a suitable family of combinatorial objects. Each of the three bijection gives its own generalization of Cayley formula. In particular, the last proof, done by Seo and Shin, has an application to computer science(theoretical computation), which is a typical example that pure mathematics supply powerful tools to other research fields.

수학의 역사에서는 이미 발견되어 논증된 정리를 새로운 방법으로 공략함으로써 그 정리의 깊은 의미를 드러내는 작업의 기록을 쉽게 찾을 수 있다. 이 연구는 직관적으로 비교적 이해하기 쉬운 소재인 수형도를 대상으로 하여, 꼭지점의 집합이 결정되었을 때 수형도의 개수를 결정하여 주는 케일리 공식(Cayley formula)의 증명에 대한 서로 다른 네 가지 접근방법을 소개하는 것을 목적으로 한다. 네 가지 증명은 수형도의 성질로부터 유도된 재귀적 관계식을 이용한 케일리의 증명에서부터 특정한 수학적 대상과 수형도 사이의 일대일대응 관계에 주목하는 나머지 세 가지 증명으로 이루어진다. 특히, 마지막 증명은 순수한 수학적 작업이 다른 분야에 강력한 도구를 제공하는 전형적인 예를 보여준다.

Keywords