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ON THE MULTI-DIMENSIONAL PARTITIONS

OF SMALL INTEGERS

Jun Kyo Kim

Abstract. For each dimension exceeds 1, determining the number of

multi-dimensional partitions of a positive integer is an open question in

combinatorial number theory. For n ≤ 14 and d ≥ 1 we derive a formula
for the function ℘d(n) where ℘d(n) denotes the number of partitions of n

arranged on a d-dimensional space. We also give an another definition of
the d-dimensional partitions using the union of finite number of divisor

sets of integers.

1. Introduction

Partitioning of integers is a problem in number theory dating back to the
Middle Ages [3, 2]. A one-dimensional partition of a positive integer n is given
by

n = n1 + n2 + · · ·+ nk (1.1)

where all ni’s are non-negative integers and ni ≥ ni+1. A two-dimensional or
plane partition of an integer is a decomposition into a sum of smaller positive
integers which are arranged on a plane. The ordering property generalizes
to the summands being non-increasing along both the rows and the columns.
Generalization to d-dimensional one is straightforward. In defining higher-
dimensional partitions, the fact that sequences are non-increasing in all the
directions becomes important. A d-dimensional partition of a positive integer
n is an array whose sum is n:

n =
∑

i1,.,id>0

ni1i2···id ,

where the ni1i2···id are non-negative integers satisfying ni1i2···id > nj1j2···jd
whenever i1 ≤ j1, i2 ≤ j2, ..., id ≤ jd [1, p.179]. For example, the following
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is a plane partition of 16:

1
4 1
5 3 2

5(0,0) + 3(0,1) + 2(0,2) + 4(1,0) + 1(1,1) + 1(2,0)

and the set τ = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)} is called a Young dia-
gram of 3 + 2 + 1. See Section 2 for definition and explanation.

We denote λ `d n when λ is a d-dimensional partition of n. Let ℘d(n) denote
the number of d-dimensional partitions of n. By convention, let ℘d(0) = 1. For
example, ℘2(3) = 6 since there are six plane partitions with sum 3:

1 1 1

1

1 1

1
1
1 2 1

1

2 3.

In Section 2, we give another definition of the function ℘d(n). Section 3
describes how to get the values of the function ℘d(n) for integers n up to 14.

2. Higher-dimensional partitions

A one-dimensional partitions can be graphically visualized with Young dia-
grams [7, 6]. A Young diagram (also called Ferrers diagram) is a finite collection
of cells arranged in left-justified rows, with the row lengths weakly decreasing.
Listing the number of boxes in each row gives a partition of a non-negative
integer n. For a Young diagram ν, let |ν| be the total number of cells of the
diagram. Young diagrams will be drawn using the French notation with the
longest row on the bottom and will be identified with the partition itself by re-
ferring to a partition as a collection of cells. For example, the Young diagrams
corresponding to the partitions of 4 are

4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1

.

Since there is a obvious one-to-one correspondence between one-dimensional
partitions and Young diagrams, we use these two terms interchangeably.

Let N be the set of all non-negative integers, N∗ be the set of all positive
integers and pi be the ith prime(i.e., p1 = 2, p2 = 3, etc.). For n ∈ N∗, let
DV (n) be the set of all positive divisors of n and ω(n) be the largest prime
factor of n.

Definition 1. Let d and n be positive integers. Then we define a function

Hd(n) = {s ∈ Hd||s| = n},
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where

Hd =

{
k⋃
`=1

DV (n`) | n`’s are positive integers with ω(n`) ≤ pd+1

}
.

For example, |H2(3)| = 6 since

H2(3) = {{1, 2, 22}, {1, 3, 32}, {1, 5, 52}, {1, 2, 3}, {1, 2, 5}, {1, 3, 5}}.
Let n be a positive integer and ν be any Young diagram with n boxes.

Because any cell (i, j) in ν can be filled with the number 2j3i, we know that for
any left side of or below of the cell (i, j) are filled with divisors of 2j3i. Thus,
we have ⋃

(i,j)∈ν

{2j3i} =
⋃

(i,j)∈ν

DV (2j3i) ∈ H1(n).

Consequently,

n = |
⋃

(i,j)∈ν

DV (2j3i)|.

Conversely, if A is an element of H1(t), then the set

Ã = { cell (i, j)|(i, j) ∈ N∗ × N∗ and 2j3i ∈ A}
is a Young diagram with t boxes.

By the obvious one-to-one correspondence above, we have

Proposition 2.1. Let n be a positive integer. Then

℘1(n) = |H1(n)|.

For example, |H1(4)| = 5 since

1 3 3233
2
1 3 32

2 6
1 3

22

2
1 3

23

22

2
1

{1, 3, 32, 33} {1, 2} ∪ {1, 3, 32} {1, 3, 2, 6} {1, 3} ∪ {1, 2, 22} {1, 2, 22, 23}

.

Theorem 2.2. For a positive integer d, we have

℘d(n) = |Hd(n)| for all n ∈ N∗.

Proof. Let

λ =

 ∑
i1,.,id>0

ni1i2···id


be a d-dimensional partition of a positive integer n. The d-dimensional partition
λ may be reinterpreted to

λ̂ =

 ∑
ω(t)≤pd

nt

 , (2.1)
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where the nt’s are positive integers satisfying nt ≥ ns whenever t divides s.

Then we write λ̂ ˆ̀
d n.

For a set S, let aS = {as|s ∈ S}. From (2.1) and the definition of the
function DV , we obtain

n =
∑

ω(t) ≤ pd
nv ≥ ns whenever v|s

∣∣t DV (p nt−1
d+1 )

∣∣

=

∣∣∣∣∣∣∣∣∣∣∣
⋃

ω(t) ≤ pd
nv ≥ ns whenever v|s

t DV (p nt−1
d+1 )

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

ω(t)≤pd

DV (tp nt−1
d+1 )

∣∣∣∣∣∣ , (2.2)

which proves the theorem. �

Lemma 2.3. Let d be a positive integer. Then

℘d(n) =
∣∣∣{[1t1 + · · ·+ 1tn ] ˆ̀

d+1 n
}∣∣∣ .

Proof. From Theorem 2.2 and (2.2), we have

|Hd(n)| =

∣∣∣∣∣∣∣
τ =

⋃
ω(t)≤pd

nv≥ns whenever v|s

DV (tp 1−1
d+2 ) | |τ | = n


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

 ∑
ω(t)≤pd

1t

 ˆ̀
d+1 n


∣∣∣∣∣∣

=
∣∣∣{[1t1 + · · ·+ 1tn ] ˆ̀

d+1 n
}∣∣∣ .

�

To evaluate ℘d(2), one can easily see that the number of d-dimensional
partitions of 2 is d+ 1 since

℘d(2) = |Hd(2)| = |{{1, pi}|i = 1, ..., d+ 1}| = d+ 1.

By the following theorem, the number of d-dimensional partitions of each inte-
ger less than 7 can be evaluated.
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Theorem 2.4. ([5], [1] Theorem 11.8.)

℘d(0) = 1,

℘d(1) = 1,

℘d(2) =

(
d
1

)
+ 1,

℘d(3) = 1 + 2d+

(
d
2

)
,

℘d(4) = 1 + 4d+ 4

(
d
2

)
+

(
d
3

)
,

℘d(5) = 1 + 6d+ 11

(
d
2

)
+ 7

(
d
3

)
+

(
d
4

)
,

℘d(6) = 1 + 10d+ 27

(
d
2

)
+ 28

(
d
3

)
+ 11

(
d
4

)
+

(
d
5

)
.

Since the set Hd(n) is fixed by any permutation of {p1, ..., pd+1}, we have

Lemma 2.5. Let n be a fixed positive integer greater than 1. Then there exist
non-negative integers a(n, i) which satisfy the following:

℘d(n) =

n−1∑
i=1

a(n, i)

(
d+ 1

i

)
.

Proof. Let χ(m) be the set of all prime factors of m. For a positive i, define

Gd(n, i) =

[1t1 + · · ·+ 1tn ] ˆ̀
d+1 n | χ(

n∏
j=1

tj) = {p1, ..., pi}

 .

Then by Lemma 2.3,∣∣∣{[1t1 + · · ·+ 1tn ] ˆ̀
d+1 n

}∣∣∣
=

∣∣∣∣∣∣
n−1⋃
i=1

[1t1 + · · ·+ 1tn ] ˆ̀
d+1 n | |χ(

n∏
j=1

tj)| = i


∣∣∣∣∣∣

=

n−1∑
i=1

|Gd(n, i)|
(
d+ 1

i

)
.

which is the result what we want. �

We calculated (by computer) a(n, i) for each of n ≤ 14 which are defined on
Lemma 2.5. Thus, we have
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Theorem 2.6. Let d be a positive integer.

℘d(2) = [[1]]d,

℘d(3) = [[1, 1]]d,

℘d(4) = [[1, 3, 1]]d,

℘d(5) = [[1, 5, 6, 1]]d,

℘d(6) = [[1, 9, 18, 10, 1]]d,

℘d(7) = [[1, 13, 44, 49, 15, 1]]d,

℘d(8) = [[1, 20, 97, 172, 110, 21, 1]]d,

℘d(9) = [[1, 28, 195, 512, 550, 216, 28, 1]]d,

℘d(10) = [[1, 40, 377, 1370, 2195, 1486, 385, 36, 1]]d,

℘d(11) = [[1, 54, 694, 3396, 7603, 7886, 3514, 638, 45, 1]]d,

℘d(12) = [[1, 75, 1251, 7968, 23860, 35115, 24318, 7484, 999, 55, 1]]d,

℘d(13) = [[1, 99, 2185, 17910, 69580, 138155, 138075, 65997, 14667,

1495, 66, 1]]d,

℘d(14) = [[1, 133, 3765, 38942, 191795, 495870, 677663, 471276,

161202, 26875, 2156, 78, 1]]d,

where [[c1, ..., ct]]d =
∑t
i=1 ci

(
d+1
i

)
.

3. Concluding remarks and exact enumeration

Previous attempts on studying solid partitions with a computer have been
based on exact enumeration [5, 4]. Lemma 2.3 have been based on exact enu-
meration and the algorithm is made by the following. Partitions that are
related to each other by symmetry operations are counted only once and mul-
tiplied by the corresponding symmetry factor. In Table 1, we list the number
of d-dimensional partitions from n = 1 to n = 9 for each d = 2, 3, ..., 9.

Table 1. The number of multi-dimensional partitions of n.

℘1(n) ℘2(n) ℘3(n) ℘4(n) ℘5(n) ℘6(n) ℘7(n) ℘8(n) ℘9(n)

1 1 1 1 1 1 1 1 1 1

2 2 3 4 5 6 7 8 9 10

3 3 6 10 15 21 28 36 45 55

4 5 13 26 45 71 105 148 201 265

5 7 24 59 120 216 357 554 819 1165

6 11 48 140 326 657 1197 2024 3231 4927

7 15 86 307 835 1907 3857 7134 12321 20155

8 22 160 684 2145 5507 12300 24796 46209 80920

9 30 282 1464 5345 15522 38430 84625 170370 319555

10 42 500 3122 13220 43352 118874 285784 621316 1247779
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A finite sequence of real numbers {b0, b1, ..., bm} is said to be unimodal if
there exists an index 0 ≤ m∗ ≤ m, called the mode of the sequence, such that
bj increases up to j = m∗ and decreases from then on. We finish this article by
noting that Theorem 2.6 indicates that the sequences {a(n, i)}i=1,...,n−1, which
are defined in Lemma 2.5, are unimodal for n = 1, ..., 14. Therefore, we now
mention an additional problem.

Are the sequences {a(n, i)}i=1,...,n−1, which are defined in Lemma
2.5, unimodal for all n?
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