• Title/Summary/Keyword: collector efficiency

Search Result 326, Processing Time 0.023 seconds

Drying of Crops with Solar Heated Air -Drying of Rough Rice - (태양열을 이용한 농산물건조에 관한 연구 (I)-벼의 건조에 대하여)

  • 이문남;금동혁;류능환
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.100-113
    • /
    • 1978
  • Drying grain with conventional artificial drying methods requires great quantities of petroleum fuels. Depletion of fossil fuel increases the need of the utilization of solar energy as an alternative to petroluem fuels for drying grain , an energy intensive agricultural operation. Many techniques for the utilization of solar energy in grain drying have been developed, however, there are many problems in adopting solar energy as an energy sources for drying grain. Futhermore, very little research has been done on solar grain drying in Korea. This study was conducted to evaluate the availability of solar energy for drying of rough rice in Chuncheon, Suweon, and Jinju areas based on 50year meteorological data, and to analyze experimentally the performance of a solar air collector for dying grain, and to find the effects of solar heated air compared to unheated air on the rate of drying and energy consumption required for drying of rough rice. The results of this study was may be summarized as follows ; 1. Monthly average daily total radiation on a horizontal surface in October was 260.6 ly/day for Chuncheon, 240.3 ly/day for Suweon , and 253.4 ly/day for Jinju area, respectively. 2. the ratio of monthly average daily diffuse radiation to daily total radiation on a horizontal surface was approximately 0.41 for Chuncheon, 0.45 for Suweon, and 0.44 for Jinju area, respectively. 3. Although the statistical distribution curves of daily total radiation for the three locations were not identical , the differences among them were not large and may be neglected for many practical purposes. 4. I was estimated that the optimum tilting angle of the collector in October was approximately 46 degrees for Chuncheon and Suweon and 45 degrees for Jinju. 5. The ratio of the total radiation on a optimum tilting plane to that on a horizontal plane was estimated to be 1.36 for Chuncheon, 1.31 for Suweon, and 1.27 for Jinju , respectively. 6. The collection efficiency of the solar air collector ranged from 47. 8 to 51. 5 percent at the air flow rates of 251. 1-372.96 $m^3$/hr. High efficiency remained nearly , constant during the best sunshine hours, 10 a.m. to 2 p.m. and decreased during other hours. More energy was collected as the air flow rate incresed. 7. The average temperature rise in the drying air from the solar collector for the test period varied from $6.5^\circC$ to $21.8^\circC$ above the ambient air temperature. 8. Solar-dried rough rice averaged 13.7 percent moisture (w.b.) after 130 hours of drying with the air flow rate of 1. 64 ccm/$m^3$, and rough rice dried with natural air averaged 15.1 percent moisture (w.b.) after 325 hours of drying with the same air flow rate. 9. Energy saving of 2.4 kwh per $m^3$ percentage point of moisture removed was obtained from solar heated air drYing. The solar bin used 53.3 percent less energy per percentage point of moisture removed than the natural air bin.

  • PDF

A Study on the Correlation Level Among Air Pollution from Solid waste Incinerator (고형폐기물 소각로에서 배출되는 대기오염물질간의 상관성에 관한 연구)

  • 조상원
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.183-187
    • /
    • 1999
  • The purpose of this study is providing basic data to control the air pollutants from solid waste incinerator. Incinerating the waste wood, the electrostatic precipitator had the best collection efficiency. The leather incineration had the same collection efficiency as synthetic resin incineration. And the coarse particle collection efficiency was high. As you know in correlation of leather incineration. pollutants produced a from incinerator are mostly fine particles. If the scrubber used only in the process produced a lot of fine particles. It is adequate to use the above control devices, together with high efficiency collector like bag-filter. To select the adequate control devices, it is required to investigate the size distribution before establishing control devices.

  • PDF

Experimental performance investigation of compound parabolic cavity receiver having single absorber tube

  • Omar Al-Nabhani;Saud Al-Kalbani;Azzam Al-Alawi;Afzal Husain
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • The current study presents experimental research on a parabolic trough collector with tube and cavity receivers. The primary concentrating parabolic reflector is designed for an aperture area of 2×2 m2 with mirror-polished stainless steel sheet reflectors. The cavity receiver consists of a compound parabolic secondary reflector and a copper tube. Both the conventional tube receiver and the cavity receiver tube are coated with black powder. The experiments are carried out to compare the efficiency of the cavity receiver with the tube receiver for fluid temperature rise, thermal efficiency, and overall losses. The experiments showed significantly higher fluid temperature rise and overall efficiency and lower thermal losses for the cavity receiver compared to the tube receiver within the parameters explored in this study.

The Heating Performance Evaluation of Heating System with Building-Integrated Photovoltaic/Thermal Collectors (실험을 통한 건물통합형 태양광·열(BIPVT) 시스템의 난방성능 평가)

  • Jeong, Seon-Ok;Kim, Jin-Hee;Kim, Ji-Seong;Park, Se-Hyeon;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.113-119
    • /
    • 2012
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of PV module with a solar thermal collector which forms one device that produce thermal energy as well as electricity. In many studies various water type PVT collectors have been proposed in effort to increase their electrical and thermal efficiency. The aim of this study is to evaluate the heating performance of heating system combined with PVT collectors that on integrated building roof. For this study, the BIPVT system of 1.5kWp was installed at the experimental house, and it was incorporated with its heating system. From the experimental results, the solar fraction of the heating system with BIPVT was 15%. It was also found that was analyzed that the heating energy for the house can be reduced by 47%, as the heat gained from BIPVT system pre-heated the water used for heating system.

Designed and Performance Analysis of High Efficiency Concentrated Photovoltaic System using III-V Compound Semiconductor (III-V 화합물 반도체를 이용한 고효율 집광형 태양광 발전시스템 설계 및 성능분석)

  • Ko, Jae-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.33-39
    • /
    • 2012
  • For photovoltaic power generation need certainly decreasing module's price and increasing promote efficiency technology. Almost of solar panel is on the decrease energy efficiency since 2,000. like silicone(Si) solar panel, thin film solar panel and etc. Silicone(Si) solar panel was best efficiency in 1999. It's 24%. But after that time, It didn't pass limit of energy efficiency. That's why, nowadays being issued that using III-V compound semiconductor to high efficiency of concentrating photovoltaic system for making an alternative proposal. In Korea, making researches in allied technology with III-V compound semiconductor solar panel, condenser technology, and solar tracker. but feasibility study for concentrating photovoltaic power generation hasn't progressed yet. This thesis made a plan about CPV(Concentrating Photovoltaic)system and CPV has a higher energy efficiency than PV(Photovoltaic)system in fine climate conditions from comparing CPV with using silicone(Si) solar panel to PV's efficiency test result.

Agricultural Radial Collector Wells in South Korea and Sustainability (한국의 농업용 방사상 집수정 현황 및 지속가능성)

  • Hong, Soun-Ouk;Song, Sung-Ho;An, Jung-Gi;Kim, Jin-Sung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.331-337
    • /
    • 2016
  • Radial collector wells (RCWs) have been managed by Korea Rural Community Corporation (KRC) since 1983, installing 98 wells for agriculture in rural area over the country. Among them, 20 wells were installed upstream of 5 subsurface dams and the remaining were installed regardless of the subsurface dam. Most of RCWs have been developed in 1980s and 1990s, and 83 wells have been passed more than 20 years after construction. The number of horizontal arms for RCWs varies from 9 to 28, with length and diameter being 10~30 m and 65 mm, respectively. The central caisson with an inner diameter of 3.5 m was commonly constructed to a depth of 10 m. The maximum pumping rates in RCWs, which are located at distances of 10 to 1,200 m from the river, are 2,000~10,000 m3/day. RCW has a fundamental problem that reduced pumping capacity and degraded well efficiency, due to the physical and chemical clogging. From the feasibility test for improving RCW performance, specific capacity increased to 67% after rehabilitation. TV logging for RCW horizontal arm shows that near the caisson is more severe clogging. From the results of this study, KRC has established the guidebook for monitoring and improving well efficiency through physical/chemical treatment, well logging, and hydraulic tests and managed RCWs periodically with its rehabilitation methods.

Surface Chemical Aspects of Coagulation, Deposition, and Filtration Processes: Variation of Electrokinetic Potential at Metal Oxide-Water and Organic-Water Interfaces in the $Na^+$ and $Ca^{2+}$ Ion Solutions

  • Kim, Sung-Jae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.173-183
    • /
    • 2000
  • This study measured the zeta potential of both latex colloidal particles with carboxylate surface groups and glass beads (collectors) with silanol surface group employing various solution with different chemical characteristics. The results have been compared with the surface chemistry theory. The zeta potential of the particle and collector increased with increasing pH up to 5.0 regardless of the solution chemistry. For a monovalent electrolyte solution(sodium chloride solution) the zeta potential steadily increased until the pH reached 9.5. In contrast, little change in zeta potential was made between 5.0 and 9.5 for a divalent electrolyte solution (sodium chloride solution) the zeta potential steadily increased until the pH reached 9.5. In contrast, little change in zeta potential was made between 5.0 and 9.5 for a divalent electrolyte solution (calcium chloride solution). In other words, the more the pH decreases, the larger the effect of neutral salts, such as NaCl and CaCl$_2$, have on the ζ-potential values. In this study, the PZPC(point of zero proton condition) of the particle and collector occurred below a pH of 3.1, H(sup)+ and OH(sup)- acted as a PDI (potential determining ion), and Na(sup)+ acted as an IDI(indifferent ion). The magnitude of the negative ζ-potential values of the particle and collector monotonically increased as the concentrations of Na(sup)+ or Ca(sup)2+([Na(sup)+] or [Ca(sup)2+]) decreased (the values of pNa or pCa increased). In the case of latex particles, the ζ-potential should aproach zero (isoelectric point; IEP) asymptotically as the pNa approaches zero, while in the case of calcium chloride electrolyte, ζ-potential reversal may be expected to occur around 3.16$\times$10(sup)-2MCaCl$_2$(pCa=1.5). pH, valance and ionic strength can be used in various ways to improve the water treatment efficiency by modifying the charge characteristics of the particle and collector. Predictive capability is far less certain when EDL(electrical double layer) repulsive forces exist between the particle and collector.

  • PDF

The Characteristic Study on Bottom Ash Flotation of Vegetable Oil as a Collector (식물성 기름 포수제의 바텀애쉬 부유선별 특성 연구)

  • Kim, Min Sik;Cha, Jong Mun;Kang, Heon Chan
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2018
  • This study aims to investigate the characteristics on bottom ash flotation using vegetable oils as a collector. The experiment of changing the kerosene dosage as a collector for the flotation of coal ashes, the recovery of unburned carbon and unburned carbon content were 80% and 63%, respectively, when the dosage of kerosene was 9 kg/ton. The experiment of using soybean oil as a collector to improve flotation efficiency, the recovery of unburned carbon and unburned carbon content increased to 95% and 68%, respectively, when the dosage of soybean oil was 9 kg/ton. The recovery of unburned carbon and unburned carbon content were 99% and 78%, respectively, when safflower oil containing more poly unsaturated fats with double bonds than soybean oil was 9 kg/ton. The calorific value of the unburned carbon was 5,803 cal/g, confirming that it was possible to be used as a fuel for thermal power plants. Lastly, using vegetable oil as a collector it showed higher recovery of unburned carbon and higher unburned carbon than kerosene, which was mineral oil. Moreover, oil containing a large amount of poly unsaturated fat with two or more double bonds was found to have higher unburned carbon than other vegetable oils; thus showing excellent adsorbability for unburned carbon.

Analysis of Filtration Performance by Brownian Dynamics (Brownian Dynamics 를 이용한 입자 포집 과정 및 여과 성능 해석)

  • Bang, Jong-Geun;Yoon, Yoong-Sup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.811-819
    • /
    • 2009
  • In the present study, deposition of discrete and small particles on a filter fiber was simulated by stochastic method. Trajectory of each particle was numerically solved by Langevin equation. And Lattice Boltzmann method (LBM) was used to solve flow field around the filter collector for considering complex shape of deposit layer. Interaction between the flow field and the deposit layer was obtained from a converged solution from an inner-loop calculation. Simulation method is properly validated with filtration theory and collection efficiency due to different filtration parameters are examined and discussed. Morphology of deposit layer and its evolution was visualized in terms of the particle size. The particle loaded effect on collection efficiency was also discussed.

Development of Passive Solar Water Heater 1. Selective absorbers (자연형 온수 급탕시스템 개발)

  • Lee, K.D.;Auh, P.C.M.;You, C.K.
    • Solar Energy
    • /
    • v.4 no.2
    • /
    • pp.29-36
    • /
    • 1984
  • This paper reviews the current status of R&D work on selective absorber materials. For the efficient utilization of solar energy, various types of selective absorber materials are being used for solar hot water heaters. Many selective absorbers which have been proposed and designed up to data are classified according to the absorption mechanisms. Temperature-time cycle method is often recommended for the measurement of solar absorptance. In addition, conversion efficiency of the solar collector with selective surface is compared with one with black paint surface.

  • PDF