DOI QR코드

DOI QR Code

Experimental performance investigation of compound parabolic cavity receiver having single absorber tube

  • Omar Al-Nabhani (Department of Mechanical and Industrial Engineering, Sultan Qaboos University) ;
  • Saud Al-Kalbani (Department of Mechanical and Industrial Engineering, Sultan Qaboos University) ;
  • Azzam Al-Alawi (Department of Mechanical and Industrial Engineering, Sultan Qaboos University) ;
  • Afzal Husain (Department of Mechanical and Industrial Engineering, Sultan Qaboos University)
  • Received : 2021.07.15
  • Accepted : 2022.09.07
  • Published : 2022.09.25

Abstract

The current study presents experimental research on a parabolic trough collector with tube and cavity receivers. The primary concentrating parabolic reflector is designed for an aperture area of 2×2 m2 with mirror-polished stainless steel sheet reflectors. The cavity receiver consists of a compound parabolic secondary reflector and a copper tube. Both the conventional tube receiver and the cavity receiver tube are coated with black powder. The experiments are carried out to compare the efficiency of the cavity receiver with the tube receiver for fluid temperature rise, thermal efficiency, and overall losses. The experiments showed significantly higher fluid temperature rise and overall efficiency and lower thermal losses for the cavity receiver compared to the tube receiver within the parameters explored in this study.

Keywords

Acknowledgement

The authors acknowledge the support from Sultan Qaboos University, Oman, (Grant No. (IG/ENG/MEID/21/01) for conducting this research.

References

  1. Bader, R., Pedretti, A., Barbato, M. and Steinfeld, A. (2015), "An air-based corrugated cavity-receiver for solar parabolic trough concentrators", Appl. Energ., 138, 337-345. https://doi.org/10.1016/j.apenergy.2014.10.050.
  2. Cao, F., Li, Y., Wang, L. and Zhu, T.Y. (2016), "Thermal performance and stress analyses of the cavity receiver tube in the parabolic trough solar collector". IOP Conference Series: Earth and Environmental Science, 40(1). https://doi.org/10.1088/1755-1315/40/1/012067.
  3. Dabiri, S., Khodabandeh, E., Poorfar, A.K. and Mashayekhi, R. (2018), "Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator", Energy, 153, 17-26. https://doi.org/S0360544218306297. https://doi.org/10.1016/j.energy.2018.04.025
  4. Hack, M., Zhu, G. and Wendelin, T. (2017), "Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs", Appl. Energ., 208, 1441-1451. https://doi.org/10.1016/j.apenergy.2017.09.009.
  5. He, Y.L., Wang, K., Qiu, Y., Du, B.C., Liang, Q. and Du, S. (2019), "Review of the solar flux distribution in concentrated solar power: non-uniform features, challenges, and solutions", Appl. Therm. Eng., 149, 448-474. https://doi.org/10.1016/j.applthermaleng.2018.12.006.
  6. Lakshmipathy, B., Sivaraman, B., Senthilkumar, M., Kajavali, A. and Sivakumar, K. (2020), "Technological improvement on energy-efficient methods applied to a solar cavity collector", Mater. Sci. Energ. Technol., 3, 456-463. https://doi.org/10.1016/j.mset.2020.02.010.
  7. Li, X., Chang, H., Duan, C., Zheng, Y. and Shu, S. (2019), "Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors", Appl. Energ., 237. 431-439. https://doi.org/10.1016/j.apenergy.2019.01.014.
  8. Lin, M., Sumathy, K., Dai, Y.J. and Zhao, X.K. (2014), "Science direct performance investigation on a linear fresnel lens solar collector using cavity receiver", Solar Energ., 107, 50-62. https://doi.org/10.1016/j.solener.2014.05.026.
  9. Mohamad, K. and Ferrer, P. (2021), "Thermal performance and design parameters investigation of a novel cavity receiver unit for parabolic trough concentrator", Renew. Energ., 168, 692-704. https://doi.org/10.1016/j.renene.2020.12.089.
  10. Ortega (2010), "( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2010 / 0035098 A1 Patent Application Publication" 1(19), 1-5. https://patentimages.storage.googleapis.com/3b/c9/82/c283c7b24afe69/US20100019677A1.pdf.
  11. Sendhil Kumar, N. and Reddy, K.S. (2008), "Comparison of receivers for solar dish collector system", Energ. Convers. Manage., 49(4), 812-819. https://doi.org/10.1016/j.enconman.2007.07.026.
  12. Tsekouras, P., Tzivanidis, C. and Antonopoulos, K. (2018), "Optical and thermal investigation of a linear fresnel collector with trapezoidal cavity receiver", Appl. Therm. Eng., 135, 379-388. https://doi.org/10.1016/j.applthermaleng.2018.02.082.
  13. Zhu, G., Wendelin, T., Wagner, M.J. and Kutscher, C. (2014), "History, current state, and future of linear fresnel concentrating solar collectors." Solar Energ., 103, 639-652. https://doi.org/10.1016/j.solener.2013.05.021.