Abstract
This study measured the zeta potential of both latex colloidal particles with carboxylate surface groups and glass beads (collectors) with silanol surface group employing various solution with different chemical characteristics. The results have been compared with the surface chemistry theory. The zeta potential of the particle and collector increased with increasing pH up to 5.0 regardless of the solution chemistry. For a monovalent electrolyte solution(sodium chloride solution) the zeta potential steadily increased until the pH reached 9.5. In contrast, little change in zeta potential was made between 5.0 and 9.5 for a divalent electrolyte solution (sodium chloride solution) the zeta potential steadily increased until the pH reached 9.5. In contrast, little change in zeta potential was made between 5.0 and 9.5 for a divalent electrolyte solution (calcium chloride solution). In other words, the more the pH decreases, the larger the effect of neutral salts, such as NaCl and CaCl$_2$, have on the ζ-potential values. In this study, the PZPC(point of zero proton condition) of the particle and collector occurred below a pH of 3.1, H(sup)+ and OH(sup)- acted as a PDI (potential determining ion), and Na(sup)+ acted as an IDI(indifferent ion). The magnitude of the negative ζ-potential values of the particle and collector monotonically increased as the concentrations of Na(sup)+ or Ca(sup)2+([Na(sup)+] or [Ca(sup)2+]) decreased (the values of pNa or pCa increased). In the case of latex particles, the ζ-potential should aproach zero (isoelectric point; IEP) asymptotically as the pNa approaches zero, while in the case of calcium chloride electrolyte, ζ-potential reversal may be expected to occur around 3.16$\times$10(sup)-2MCaCl$_2$(pCa=1.5). pH, valance and ionic strength can be used in various ways to improve the water treatment efficiency by modifying the charge characteristics of the particle and collector. Predictive capability is far less certain when EDL(electrical double layer) repulsive forces exist between the particle and collector.