• Title/Summary/Keyword: PDI

Search Result 189, Processing Time 0.027 seconds

Characterization of Protein Disulfide Isomerase during Lactoferrin Polypeptide Structural Maturation in the Endoplasmic Reticulum

  • Lee, Dong-Hee;Kang, Seung-Ha;Choi, Yun-Jaie
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.102-108
    • /
    • 2001
  • A time-dependent folding process was used to determine whether or not protein disulfide isomerase (PDI) plays an important role in the maturation of nascent lactoferrin polypeptides. Interaction between lactoferrin and PDI was analyzed according to the co-immunoprecipitation of the two proteins. The results indicate that lactoferrin folding requires a significant interaction with PDI and its binding is relatively brief compared to other nascent polypeptides. The amount of lactoferrin interacting with PDI increases up to half a minute and sharply decreases beyond this time point. During the refolding process that follows reduction by DTT, lactoferrin polypeptides heavily interact with PDI and the interaction period was extended compared to the normal folding process. In terms of the temperature effect on PDI-lactoferrin interaction, PDI binds to lactoferrin polypeptides longer at a lower temperature (here, $25^{\circ}C$) than $37^{\circ}C$. The lactoferrin-PDI interaction was also studied in vitro. According to the in vitro experiment data, PDI was still functional in cell lysates assisting lactoferrin folding into the mature form. PDI interacts with lactoferrin polypeptides for an extended period during the folding in vitro. During the refolding process in vitro, intermolecular aggregates and refolding oligomers matured into a functional form after PDI binds to the lactoferrin. These results suggest that PDI provides a prolonged chaperoning activity in the refolding processes and that there appears to be a greater requirement for PDI chaperone activity in the refolding of lactoferrin polypeptides.

  • PDF

Bombyx mori Protein Disulfide Isomerase (bPDI) Protects Sf9 Cells from Endoplasmic Reticulum (ER) Stress (소포체 스트레스에 대한 Protein Disulfide Isomerase의 세포보호효과)

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Choi, Kwang-Ho;Kang, Seok-Woo;Kwon, Ki-Sang;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1129-1134
    • /
    • 2007
  • In the previous our study, a cDNA that encodes protein disulfide isomerase from Bombyx mori (bPDI)was isolated and characterized. bPDI has an open reading frame of 494 amino acids contained two PDI-typical thioredoxin active site of WCGHCK and ER (endoplasmic reticulum) retention signal of the KDEL motif at its C-terminal. Recent studies have demonstrated that misfolded proteins are accumulated in many diseases including Alzheimer’s, goiter, emphysema, and prion infections. bPDI was over-expressed or knock-downed in Sf9 cells to study the relationship between bPDI expression and protections against protein misfolding. bPDI gene was cloned in insect expression vector pIZT/V5-His for over-expression and bPDI double-stranded RNA (dsRNA) was generated for knock-down. Over-expression of bPDI significantly improved survival rate, but bPDI dsRNA transfection significantly reduced survival rate after 48 hours exposure. In mock-transfected or wild-type cells had no significant effect. The results support the view that bPDI is one of the important intracellular components for cell protect mechanism, especially, against ER stress such as protein misfolding.

Monoclonal Antibody Refolding and Assembly: Protein Disulfide Isomerase Reaction Kinetics

  • Park, Sun-Ho;Ryu, Dewey D.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • The protein disulfide isomerase (PDI) reaction kinetics has been studied to evaluate its effect on the monoclonal antibody (Mab) refolding and assembly which accompanies disulfide bend formation. The MAb in vitro assembly experiments showed that the assembly rate of heavy and light chains can be greatly enhanced in the presence of PDI as compared to the rate of assembly obtained by the air-oxidation. The reassembly patterns of MAb in-termediates were identical for both with and without PDI, suggesting that the PDI does not determine the MAb assembly pathway, but rather facilitates the rate of MAb assembly by promoting PDI catalyzed disulfide bond formation. The effect of growth rate on PDI activities for MAb production has also been examined by using continuous culture system. The specific MAb productivity of hybridoma cells decreased as the growth rate increased. However, PDI activities were nearly constant fur a wide range of growth rates except very high growth rate, indicating that no direct correlation between PDI activity and specific MAb productivity exists.

Monoclonal Antibody Refolding and Assembly: Protein Disulfide Isomerase Reaction Kinetics

  • Park, Sun-Ho;Ryu, Dewey D.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.13-17
    • /
    • 1996
  • The protein disulfide isomerase(PDI) reaction kinetics has been studied to evaluate its effect on the monoclonal antibody(MAb) refolding and assembly which accompanies disulfide bond formation The MAb in vitro assembly experiments showed that the assembly rate of heavy and light chains can be greatly enhanced in the presence of PDI as compared to the rate of assembly obtained by the air-oxidation. The reassembly patterns of MAb intermediates were identical for both with and without PDI, suggesting that the PDI does not determine the MAb assembly pathway, but rather facilitates the rate of MAb assembly by promoting PDI catalyzed disulfide bond formation. The effect of growth rate on PDI activities for MAb production has also been examined by using continuous culture system. The specific MAb productivity of hybridoma cells decreased as the growth rate increased. However, PDI activities were nearly constant for a wide range of growth rates except very high growth rate, indicating that no direct correlation between PDI activity and specific MAb productivity exists.

  • PDF

Baculovirus Expression and Biochemical Characterization of the Bombyx mori Protein Disulfide Isomerase (bPDI)

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kwon, O-Yu;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.127-131
    • /
    • 2003
  • Protein disulfide isomerase (PDI) found in the endoplasmic reticulum (ER) catalyzes disulfide bond exchange and assists in protein folding of newly synthesized proteins. PDI also functions as a molecular chaperone and has been found to be associated with proteins in the ER. In addition, PDI functions as a subunit of two more complex enzyme systems: the prolyl-4-hydroxylase and the triacylglycerol transfer proteins. A cDNA that encodes protein disulfide isomerase was previously isolated from Bombyx mori (bPDI), in which open reading frame of 494 amino acids contained two PDI-typical thioredoxin active site of WCGHCK and an ER retention signal of the KDEL motif at its C-terminal, and we report its functional characterization here. This putative bPDI cDNA is expressed in insect Sf9 cells as a recombinant proteins using baculovirus expression vector system. The bPDI recombinant proteins are successfully recognized by antirat PDI antibody, and shown to be biologically active in vitro by mediating the oxidative refolding of reduced and scrambled RNase. This suggests that bPDI may play an important role in protein folding mechanism of insects.

Multimerization of Bovine Thyroglobulin, Partially Unfolded or Partially Unfolded/Reduced; Involvement of Protein Disulfide Isomerase and Glutathionylated Disulfide Linkage

  • Liu, Xi-Wen;Sok , Dai-Eun
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1275-1283
    • /
    • 2004
  • Fate of the nascent thyrolglobulin (Tg) molecule is characterized by multimerization. To establish the formation of Tg multimers, the partially unfolded/reduced Tg or deoxycholate-treated/ reduced Tg was subjected to protein disulfide isomerase (PDI)-mediated multimerization. Oxidized glutathione/PDI-mediated formation of multimeric Tg forms, requiring at least an equivalent molar ratio of PDI/Tg monomer, decreased with increasing concentration of reduced glutathione (GSH), suggesting the oxidizing role of PDI. Additional support was obtained when PDI alone, at a PDI/Tg molar ratio of 0.3, expressed a rapid multimerization. Independently, the exposure of partially unfolded Tg to GSH resulted in Tg multimerization, enhanced by PDI, according to thiol-disulfide exchange. Though to a lower extent, a similar result was observed with the dimerization of deoxycholate-pretreated Tg monomer. Consequently, it is implied that intermolecular disulfide linkage may be facilitated at a limited region of unfolded Tg. In an attempt to examine the multimerization site, the cysteine residue-rich fragments of the Tg were subjected to GSH-induced multimerization; a 50 kDa fragment, containing three vicinal dithiols, was multimerized, while an N-terminal domain was not. Present results suggest that the oxidase as well as isomerase function of PDI may be involved in the multimerization of partially unfolded Tg or deoxycholate-treated Tg.

PDI-like Enzyme in Human Follicular Fluid Converts 72 kDa Gelatinase into GA110 (사람 난포액에 존재하는 72 kDa Geletinase로부터 GA110을 만드는 PDI-like PDI-like Enzyme)

  • Kim Jisoo;Kim Haekwon
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.105-112
    • /
    • 2003
  • Previously, we discovered a new MMP-2 isoform GA110, of which appearance in human follicular fluid(FF) and serum was increased by EDTA. The present study was conducted to investigate how GAI 10 can appear by EDTA. To examine possible involvement of protein disulfide isomerase(PDI), an enzyme responsible for the dimerization of protein via disulfide formation, effect of PDI inhibitor on the appearance of GA110 by EDTA was investigated. When PDI inhibitor added to FF before EDTA treatment, the gelatinolytic activity of GA110 was abolished in a concentration dependent manner. By contrast, the activity of 72 kDa gelatinase increased. However, the PDI inhibitor added to FF after EDTA treatment, the gelatinolytic activity of GA110 was unaffected. To find out the nature of the enzyme which converts 72 kDa gelatinase into GAI 10, chromatographic separation method of FF proteins was done. Using hydroxyapatite column, fractions rich in 72 kDa gelatinase were isolated and pooled. By using this pool as substrate for the 72 kDa converting enzyme, protein fractions containing the converting activity were obtained from chromatographic separation of FF onto glutathione sepharose fast flow column. When immunoblotting was performed on this enzymatically active protein fractions against polyclonal anti-PDI antibody, distinct immunoreactivity was observed, although appeared in smaller molecular weight region. Based on these observations, it is suggested that the appearance of GAI 10 in FF by EDTA treatment could be due to an activation of PDI-like enzyme, which dimerizes 72 kDa gelatinase into GAI 10 via the formation of disulfide bond between molecules.

  • PDF

Emerging roles of protein disulfide isomerase in cancer

  • Lee, Eunyoug;Lee, Do Hee
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.401-410
    • /
    • 2017
  • The protein disulfide isomerase (PDI) family is a group of multifunctional endoplasmic reticulum (ER) enzymes that mediate the formation of disulfide bonds, catalyze the cysteine-based redox reactions and assist the quality control of client proteins. Recent structural and functional studies have demonstrated that PDI members not only play an essential role in the proteostasis in the ER but also exert diverse effects in numerous human disorders including cancer and neurodegenerative diseases. Increasing evidence suggests that PDI is actively involved in the proliferation, survival, and metastasis of several types of cancer cells. Although the molecular mechanism by which PDI contributes to tumorigenesis and metastasis remains to be understood, PDI is now emerging as a new therapeutic target for cancer treatment. In fact, several attempts have been made to develop PDI inhibitors as anti-cancer drugs. In this review, we discuss the properties and diverse functions of human PDI proteins and focus on recent findings regarding their roles in the state of diseases including cancer and neurodegeneration.

Identification of Alkylation-Sensitive Target Chaperone Proteins and Their Reactivity with Natural Products Containing Michael Acceptor

  • Liu, Xi-Wen;Sok, Dai-Eun
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1047-1054
    • /
    • 2003
  • Molecular chaperones have a crucial role in the folding of nascent polypeptides in endoplasmic reticulum. Some of them are known to be sensitive to the modification by electrophilic metabolites of organic pro-toxicants. In order to identify chaperone proteins sensitive to alkyators, ER extract was subjected to alkylation by 4-acetamido-4 -maleimidyl-stilbene-2,2 -disulfonate (AMS), and subsequent SDS-PAGE analyses. Protein spots, with molecular mass of 160, 100, 57 and 36 kDa, were found to be sensitive to AMS alkylation, and one abundant chaperon protein was identified to be protein disulfide isomerase (PDI) in comparison with the purified PDI. To see the reactivity of PDI with cysteine alkylators, the reduced form ($PDI_{red}$) of PDI was incubated with various alkylators containing Michael acceptor structure for 30 min at $38^{\circ}C$ at pH 6.3, and the remaining activity was determined by the insulin reduction assay. Iodoacetamide or N-ethylmaleimide at 0.1 mM remarkably inactivated $PDI_{red}$ with N-ethylmaleimide being more potent than iodoacetamide. A partial inactivation of $PDI_{oxid}$ was expressed by iodoacetamide, but not N-ethylmaleimide (NEM) at pH 6.3. Of Michael acceptor compounds tested, 1,4-benzoquinone ($IC_{50}, 15 \mu$ M) was the most potent, followed by 4-hydroxy-2-nonenal and 1,4-naphthoquinone. In contrast, 1,2-naphthoquinone, devoid of a remarkable inactivation action, was effective to cause the oxidative conversion of $PDI_{red}$ to $PDI_{oxid}$. Thus, the action of Michael acceptor compounds differed greatly depending on their structure. Based on these, it is proposed that POI, one of chaperone proteins in ER, could be susceptible to endogenous or xenobiotic Michael acceptor compounds in vivo system.

A Study on Preservation Description Elements of National Records based on PDI(Preservation Description Information) in OAIS Model (OAIS 모형의 PDI(Preservation Description Information)를 기반으로 하는 국가기록 보존기술요소 연구)

  • Woo, Hak-Myung;Kim, Hee-Jung
    • Journal of the Korean Society for information Management
    • /
    • v.26 no.4
    • /
    • pp.227-248
    • /
    • 2009
  • In this study, description elements of National Archives of Korea(NAK) and National Assembly Archives(NAA) were collected and analysed based on PDI(Preservation Description Information) of OAIS Reference Model(ISO 14721). As for NAK, records management guideline published in 2009 and metadata standards published in 2007 were analysed. As for NAA, Records management manual published in 2009 and metadata applied in national assembly records management system were analysed with group interviews. As a result, improved metadata details and sub-elements were suggested based on OAIS PDI concepts and Calanag's and Russell's research.