• Title/Summary/Keyword: circuit protection

Search Result 633, Processing Time 0.027 seconds

The SCR-based ESD Protection Circuit with High Latch-up Immunity for Power Clamp (파워 클램프용 래치-업 면역 특성을 갖는 SCR 기반 ESD 보호회로)

  • Choi, Yong-Nam;Han, Jung-Woo;Nam, Jong-Ho;Kwak, Jae-Chang;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • In this paper, SCR(Silicon Controlled Rectifier)-based ESD(Electrostatic Discharge) protection circuit for power clamp is proposed. In order to improve latch-up immunity caused by low holding voltage of the conventional SCR, it is modified by inserting n+ floating region and n-well, and extending p+ cathode region in the p-well. The resulting ESD capability of our proposed ESD protection circuit reveals a high latch-up immunity due to the high holding voltage. It is verified that electrical characteristics of proposed ESD protection circuit by Synopsys TCAD simulation tool. According to the simulation results, the holding voltage is increased from 4.61 V to 8.75 V while trigger voltage is increased form 27.3 V to 32.71 V, respectively. Compared with the conventional SCR, the proposed ESD protection circuit has the high holding voltage with the same triggering voltage characteristic.

Design of a High Efficiency Neon Transformer with Abnormal Load Interrupting Circuit (부하측 이상 검출 차단 장치를 내장한 고효율 자기식 네온 변압기의 설계)

  • Byun Jei-Young;Kim Yoon-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.723-726
    • /
    • 2002
  • In this paper, a high efficiency leakage transformer for neon tube is developed to improve its power factor, to reduce its core loss and weight by using a technique of shape optimization and direction of grain-oriented silicon steel sheet. A protection circuit is designed for all types of neon transformer loaded with one or more neon lamps. Whenever the neon tube fails to be started up or comes to the life end, or encounters faults with open-circuits at the output terminals of the neon transformer, the protection circuit will be initiated to avoid more critical hazards. These neon transformers need a protection circuit to prevent from current stresses on circuit components by neon tube fail. The input of the transformer is automatically cut off when the abnormal condition occurs, preventing waste of no-load power. As the results of the study, the core weight is reduced by $11\%$, the power factor improved by $5\%$ and the efficiency increased by $6\%$ compared with the conventional type due to the employment of the grain-oriented steel sl)eel and the optimized core shape.

  • PDF

Analysis of Step-Down Converter with Low Ripple for Smart IoT Devices (스마트 사물인터넷 기기용 저리플 방식의 스텝다운 컨버터 분석)

  • Kim, Da-Sol;Al-Shidaifat, AlaaDdin;Gu, Jin-Seon;Kumar, Sandeep;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.641-644
    • /
    • 2021
  • Wearable devices and IoT are being utilized in various fields, where all systems are developing in the direction of multi-functionality, low power consumption, and high speed. In this paper, we propose a DC -DC Step-down C onverter for IoT smart devices. The proposed DC -DC Step-down converter is composed of a control block of the power supply stage. It also consists of an overheat protection circuit, under-voltage protection circuit, an overvoltage protection circuit, a soft start circuit, a reference voltage circuit, a lamp generator, an error amplifier, and a hysteresis comparator. The proposed DC-DC converter was designed and fabricated using a Magnachip / Hynix 180nm CMOS process, 1-poly 6-metal, the measured results showed a good match with the simulation results.

The Protective Co-ordination between Low-Voltage Circuit-Breaker (저압차단기기의 보호협조)

  • Park, S.C.;Oh, J.S.;Lee, B.W.;Ryu, M.J.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.340-343
    • /
    • 2001
  • In an electrical network, electrical power are transmitted by a various of protection, isolation and control electric circuit devices. This thesis deals with the protection function between circuit-breakers. The protective coordination concerns the behaviour of two devices placed in series in an electrical network, with a short-circuit downstream circuit-breaker. It has two basic principles: First, discrimination which is an increasing requirement of low voltage electrical distribution systems. Second, which is less well known: cascading, which consists of installing a device, whose breaking capacity is less than the three-phase short-circuit current at its terminals and helped by main circuit-breaker. The important advantage of cascading is to be able to install at a branch circuit-breaker of a lesser performance without endangering the safety of the installation for more economical usage. To determine and guarantee co-ordination between two circuit breakers, it is necessary to carry out a theoretical approach, first, and then confirm the results by means of standard tests. This is illustrated in appendix A of IEC 947-2.

  • PDF

Adaptive undervoltage protection scheme for safety bus in nuclear power plants

  • Chang, Choong-koo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2055-2061
    • /
    • 2022
  • In the event of a short-circuit accident on a 4.16 kV non-safety bus, the voltage is temporarily lowered as backflow occurs on the safety bus. In such cases, the undervoltage relay of the safety bus shall not pick up the undervoltage so as not to interfere with the operation of the safety motors. The aim of this study is to develop an adaptive undervoltage protection scheme for the 4.16 kV safety bus considering the faults on the 13.8 kV and 4.16 kV non-safety buses connected to secondary windings of the three winding transformers, UAT and SAT. The result of this study will be the adaptive undervoltage protection scheme for the safety bus of nuclear power plants satisfying functional requirements of the safety related medium voltage motors. The adaptive undervoltage protection scheme can be implemented into an integrated digital protective relay to make user friendly and reliable protection scheme.

The novel SCR-based ESD Protection Circuit with High Holding Voltage Applied for Power Clamp (파워 클램프용 높은 홀딩전압을 갖는 사이리스터 기반 새로운 구조의 ESD 보호회로)

  • Lee, Byung-Seok;Kim, Jong-Min;Byeon, Joong-Hyeok;Park, Won-Suk;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.208-213
    • /
    • 2013
  • In this paper, we proposed the novel SCR-based ESD protection circuit with high holding voltage for power clamp. In order to increase the holding voltage, the floating p+ and n+ to n-well and p-well, respectively, in the conventional SCR. The resulting increase of the holding voltage of the our proposed ESD circuit enables the high latch-up immunity. The electrical characteristics including ESD robustness of the proposed ESD circuit have been simulated using Synopsys TCAD simulator. According to the simulation result, the proposed device has higher holding voltage of 4.98 V than that of the conventional SCR protection circuit. Moreover, it is confirmed that the device could have the holding voltage of maximum 13.26 V with the size variation of floated diffusion area.

New Thyristor Based ESD Protection Devices with High Holding Voltages for On-Chip ESD Protection Circuits

  • Hwang, Suen-Ki;Cheong, Ha-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.150-154
    • /
    • 2019
  • In the design of semiconductor integrated circuits, ESD is one of the important issues related to product quality improvement and reliability. In particular, as the process progresses and the thickness of the gate oxide film decreases, ESD is recognized as an important problem of integrated circuit design. Many ESD protection circuits have been studied to solve such ESD problems. In addition, the proposed device can modify the existing SCR structure without adding external circuit to effectively protect the gate oxide of the internal circuit by low trigger voltage, and prevent the undesired latch-up phenomenon in the steady state with high holding voltage. In this paper, SCR-based novel ESD(Electro-Static Discharge) device with the high holding voltage has been proposed. The proposed device has the lower triggering voltage without an external trigger circuitry and the high holding voltage to prevent latch-up phenomenon during the normal condition. Using TCAD simulation results, not only the design factors that influence the holding voltage, but also comparison of conventional ESD protection device(ggNMOS, SCR), are explained. The proposed device was fabricated using 0.35um BCD process and was measured electrical characteristic and robustness. In the result, the proposed device has triggering voltage of 13.1V and holding voltage of 11.4V and HBM 5kV, MM 250V ESD robustness.

Characteristics of Interruption Ability in DC Circuit Breaker using Superconducting Coil (초전도 코일을 이용한 DC 회로 차단기의 차단 능력 특성)

  • Jeong, In-Sung;Choi, Hye-Won;Youn, Jeong-Il;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.215-219
    • /
    • 2019
  • Development of DC interruption technology is being studied actively for enhanced DC grid reliability and stability. In this study, coil type superconductor DC circuit breaker was proposed as DC interruption. It is integration technology that combined current-limiting technique using superconductor and cut-off technique using mechanical DC circuit breaker. Superconductor was applied to the coil type. In simulation, Mayr arc model was applied to realize the arc characteristic in the mechanical DC circuit breaker. PSCAD/EMTDC had used to model and perform the simulation. To find out the protection range of coil type superconductor DCCB, the working operation have analyzed based on the rated voltage of DCCB. The results confirmed that, according to apply the limiting device, the protection range was increased in twice. Therefore, the probability of failure of interruption has lowered significantly.

Design of the 140W level-small sized LED Power Control Circuit (140W 급-저면적 LED 전원 제어 회로 설계)

  • An, Ho-Myoung;Lee, Juseong;Kim, Byungcheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.586-592
    • /
    • 2018
  • In this paper, HIC with various functions is proposed for the design 140W LED power control circuit. The proposed HIC integrates constant voltage/constant current circuit, short circuit protection circuit, internal constant voltage circuit, and dimmer circuit, thereby reducing the horizontal length of the PCB by 16% comparing with the conventional system. Through various experiments, we verified the performance of each block implemented inside of HIC with numerical results. (Constant voltage variation ratio: 2.9%, dimmer circuit duty variation within 5%, stable short protection at 720 mA) Since the PCB area can be significantly reduced by applying the proposed HIC. It is possible to reduce the PCB manufacturing time which takes up most of the manufacturing time, however, It is expected that the faulted power module can be replaced without replacing the whole PCB, so that maintenance / repair can be made easier.

Practical Design and Implementation of a Power Factor Correction Valley-Fill Flyback Converter with Reduced DC Link Capacitor Volume (저감된 DC Link Capacitor 부피를 가지는 역률 개선 Valley-Fill Flyback 컨버터의 설계 및 구현)

  • Kim, Se-Min;Kang, Kyung-Soo;Kong, Sung-Jae;Yoo, Hye-Mi;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.277-284
    • /
    • 2017
  • For passive power factor correction, the valley fill circuit approach is attractive for low power applications because of low cost, high efficiency, and simple circuit design. However, to vouch for the product quality, two dc-link capacitors in the valley fill circuit should be selected to withstand the peak rectified ac input voltage. The common mode (CM) and differential mode (DM) choke should be used to suppress the electromagnetic interference (EMI) noise, thereby resulting in large size volume product. This paper presents the practical design and implementation of a valley fill flyback converter with reduced dc link capacitors and EMI magnetic volumes. By using the proposed over voltage protection circuit, dc-link capacitors in the valley fill circuit can be selected to withstand half the peak rectified ac input voltage, and the proposed CM/DM choke can be successfully adopted. The proposed circuit effectiveness is shown by simulation and experimentally verified by a 78W prototype.