• 제목/요약/키워드: chlorophenol

검색결과 128건 처리시간 0.019초

Surfactant enhanced filtration performances of monochlorophenol isomers through low-pressure membrane

  • Kumar, Yogesh;Brahmbhatt, H.;Trivedi, G.S.;Bhattacharya, A.
    • Membrane and Water Treatment
    • /
    • 제2권3호
    • /
    • pp.137-145
    • /
    • 2011
  • Membrane processes are major breakthrough for the removal of organic pollutants in water remediation. The separations of solutes depend on nature of the membranes and solutes. The separation performance depends on the nature of the solutes (i.e., molecular volume, polarity, and hydrophobicity) for the same membrane. As 4-chlorophenol is of more dipolemoment compared to 2-chlorophenol, the orientation of the molecule enables it pass through the pores of the membrane, which is of negatively charged and thus separation order follows: 2-chlorophenol > 4-chlorophenol. Hydrophobicity factor also supports the order. Addition of sodium dodecyl sulfate (SDS) to chlorophenol solution shows remarkable increase in separation performance of the membrane. The improvement in separation is 1.8 and 1.5 times for 4- and 2- chlorophenol consecutively in case of 0.0082 M SDS (1cmc = 0.0082 M) in the solution. 4-chlorophenol has better attachment tendency with SDS because of its relatively more hydrophobic nature and thus reflects in performance i.e. the separation performance of 4-chlorophenol with SDS through the membrane is better compared to 2-chlorophenol.

광펜톤 반응에 의한 수중 2-클로로페놀 분해특성연구 (Degradation of 2-Chlorophenol in the Aqueous Phase by a Photo-Fenton Process)

  • 김일규
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.779-786
    • /
    • 2012
  • The degradation of 2-chlorophenol(2-CP) by various AOPs(Advanced Oxidation Processes) including the photo-Fenton process has been examined. In sole $Fe^{2+}$, UV or $H_2O_2$ process without combination, low removal efficiencies have been achieved. But the photo-Fenton process showed higher removal efficiency for degradation of 2-chlorophenol than those of other AOPs including the Fenton process and the UV processes. In the photo-Fenton process, the optimal experimental conditions of 2-chlorophenol degradation were obtained at pH 3 and the $Fe^{2+}/H_2O_2$molar ratio of 1. Also the 2-chlorophenol removal efficiency increased with decreasing of the initial 2-chlorophenol concentration. 3-chlorocatechol and chlorohydroquinone were identified as photo-Fenton reaction intermediates, and a degradation pathway of 2-chlorophenol in the aqueous phase during the photo-Fenton reaction was proposed.

Pseudomonas sp. EL-091S에 의한 4-Chlorophenol의 분해 Kinetics (Biodegradation Kinetics of 4-Chlorophenol by Pseudomonas sp. EL-091S)

  • 손준석;이건;이상준
    • 한국환경과학회지
    • /
    • 제2권2호
    • /
    • pp.95-102
    • /
    • 1993
  • In order to find the most fitted biodegradation model, biodegradation models to the initial 4-chlorophenol concentrations were investigated and had been fitted by the linear regression. The degrading bacterium, EL-091S, was selected among phenol-degraders. The strain was identified with Pseudomows sp. from the result of taxonomical studies. The optimal condition for the biodegradation was as fellows: secondary carbon source, concentration of ammonium nitrate, temperature and pH were 200mg/l fructose, 600 mg/l, $30^{\circ}C$ and 7.0 respectively. The highest degradation rate of the 4-chlorophenol was about 58% for 24 hours incubation on the optimal condition. Biodegradation kinetics model of 5 mg/l 4-Chlorophenol, 10 mg/l 4-chlorophenol and 50 mg/l 4-chlorophenol were fitted the zero order kinetics model, respectively. Key Words : 4-chlorophenol, Pseudomonas sp., zero order kinetics model.

  • PDF

Dichlorophenol의 혐기성 분해에 관한 연구 (A study on Anaerobic Biodegradation of Dichlorophenol)

  • 박주석;전연호
    • 상하수도학회지
    • /
    • 제9권2호
    • /
    • pp.127-135
    • /
    • 1995
  • The purpose of this study was to more fully evaluate the potential for chlorophenol degradation in anaerobic sludge. The pH effects on the ring cleavage of phenol and dechlorination of monochlorophenol isomers and dichlorophenl isomers. This study results are as follows ; Each of the monochlorophenol isomers were degraded in anaerobic sludge. The relatives rates were 2-Chlorophenol > 3-Chlorophenol > 4-Chlorophenol. Biodegradation results for the dichlorophenol isomers in anaerobic sludge are such as 2,3-dichlorophenol and 2,5-dichlorophenol was reductively dechlorinated to 3-chlorophenol, 2,4-dichlorophenol to 4-chlorophenol, 2,6-dichlorophenol to 2-chlorophenol. The two dichlorophenol isomers which did not contain an ortho Cl substituent 3,4-dichlorophenol and 3,5-dichlorophenol were persistent during the 6-week incubation. The rate of dechlorination was enhanced by the presence of a Cl group ortho, rather than para, to the site of dechlorination.

  • PDF

Sensing Characteristics of Tyrosinase Immobilized and Tyrosinase, Laccase Co-immobilized Platinum Electrodes

  • Quan, De;Kim, You-Sung;Shin, Woon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권8호
    • /
    • pp.1195-1201
    • /
    • 2004
  • Tyrosinase was covalently immobilized on platinum electrode according to the method we developed for laccase (Bull. Korean Chem. Soc. 2002, 23(7), 385) and p-chlorophenol, p-cresol, and phenol could be detected with sensitivities of 334, 139 and 122 nA/ ${\mu}M$ and the detection limits of 1.0, 2.0, and 2.5 ${\mu}M$, respectively. The response time ($t_{90\%}$) is 3 seconds for p-chlorophenol, and 5 seconds for p-cresol and phenol. The optimal pHs of the sensor are in the range of 5.0- 6.0. This sensor can tolerate at least 500 times repeated injections of p-chlorophenol with retaining 80% of initial activity. In case of tyrosinase and laccase co immobilized platinum electrode, the sensitivities are 560 nA/ ${\mu}M$ for p-phenylenediamine (PPD) and 195 nA/ ${\mu}M$ for p-chlorophenol, respectively. The sensitivity of the bi-enzyme sensor for PPD increases 70% compared to that of only laccase immobilized one, but the sensitivity for p-chlorophenol decreases 40% compared to that of only tyrosinase immobilized one. The sensitivity increase for the bi-enzyme sensor for PPD can be ascribed to the additional catalytic function of the co-immobilized tyrosinase. The sensitivity decrease for p-chlorophenol can be explained by the “blocking effect” of the co-immobilized laccase, which hinders the mass transport through the immobilized layer. If PPD was detected with the electrode that had been used for p-chlorophenol, the sensitivity decreased 20% compared to that of the electrode that had been used only for PPD. Similarly, if p-chlorophenol was detected with PPD detected electrode, the sensitivity also decreased 20%. The substrate-induced conformation changes of the enzymes in a confined layer may be responsible for the phenomena.

펜톤유사산화반응을 이용한 4-Chlorophenol 분해과정 예측

  • 이웅;이성재;박규홍;배범한
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.145-148
    • /
    • 2003
  • The batch experiments showed that 0.515mM 4-chlorophenol and its oxidation intermediates could be totally decomposed within 60 minutes by 1g/L steelers' dust and 0.485mM hydrogen peroxide at pH 2.7. The rate constants in the simplified kinetic model proposed in this study were estimated by fitting to the experimental data obtained in $H_2O$$_2$/steelers' dust system. Using the estimated kinetic rate constants, the simulation of 4-chlorophenol, ferrous iron, hydrogen peroxide, and hydroxyl radical concentration was performed. The predicted concentrations of 4-chlorophenol and hydrogen peroxide corresponded to the actual concentrations.

  • PDF

광펜톤반응과 펜톤반응에 의한 수중 클로로페놀 분해비교연구 (Degradation Of 4-chlorophenol By Photo-Fenton Process and Fenton Process in Aqueous Solutions)

  • 김현승;김일규
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.463-469
    • /
    • 2011
  • The degradation of 4-chlorophenol by various AOPs(Advanced Oxidation Processes) including the Fenton and the photo-Fenton process has been examined. In sole Fe, UV or $H_2O_2$ process without combination, low removal efficiencies have been achieved. But the photo-Fenton process showed higher removal efficiency for degradation of 4-chlorophenol than those of other AOPs including the Fenton process. Generally more hydrogen peroxide was required to achieve higher removal efficiencies of 4-CP at constant dosage of $FeSO_4$ in both of the Fenton and the photo-Fenton processes. Based on the results, The photo-Fenton process is proposed to be the most efficient alternative for degradation of 4-chlorophenol among the processes studied in this research.

Sn 함침-티타니아 나노입자와 나노튜브에 놓인 2-Chlorophenol 광 분해 성능 (The Photocatalytic Decompositions of 2-Chlorophenol on the Sn-impregnated Titania Nanoparticles and Nanotube)

  • 김현수;이가영;박선민;강미숙
    • 한국세라믹학회지
    • /
    • 제49권5호
    • /
    • pp.461-468
    • /
    • 2012
  • This study focuses on the difference of photocatalytic activity depending on crystal structure type of nanoparticles ($TiO_2$) and nanotubes (TNT). The photodecomposition of 2-chlorophenol on the synthesized $TiO_2$, Sn-impregnated $TiO_2$, TNT, and Snimpregnated TNT were evaluated. The characteristics of the synthesized photocatalyts, TNT, Sn/TNT, $TiO_2$, and Sn/$TiO_2$ were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Visible spectroscopy (UV-Vis), and cyclic voltammeter (CV). The water-suspended 2-chlorophenol photodegradation over $TiO_2$ (anatase structure) catalyst was better than that over pure TNT. Particularly, the water-suspended 2-chlorophenol of 10 ppm was perfectly decomposed within 4 h over Sn/$TiO_2$ photocatalyst.

Estimating dehalogenation reactivity of nanoscale zero-valent iron by simple colorimetric assay by way of 4-chlorophenol reduction

  • Mines, Paul D.;Kaarsholm, Kamilla M.S.;Droumpali, Ariadni;Andersen, Henrik R.;Hwang, Yuhoon
    • Environmental Engineering Research
    • /
    • 제25권2호
    • /
    • pp.197-204
    • /
    • 2020
  • A number of different nanoscale zero-valent iron (nZVI) materials have been prepared and compared depending on the desired properties for the particular application, but different physicochemical properties of this prepared nZVI make it difficult to universally compare and standardize them to the same scale. In this study, we aimed to demonstrate a simple microplate-based colorimetric assay using 4-chlorophenol as an indicator with respect to the remediation of real treatment targets, such as trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), and atrazine. Effect of nickel contents on 4-chlorophenol reduction was successfully investigated by the miniaturized colorimetric assay. In the same manner, the effect of nickel contents on dehalogenation of TCE, TCA, and atrazine was investigated and the pseudo-first-order kinetic constants were compared with the results for 4-chlorophenol. The similar pattern could be observed between 4-chlorophenol reduction obtained by colorimetric assay and TCE, TCA, atrazine reduction obtained by a traditional chromatographic method. The reaction kinetics does not match perfectly, but the degree of reaction can be estimated. Therefore, the colorimetric assay can be a useful and simple screening tool to determine nZVI reactivity toward halogenated organics before it is applied to a particular remediation site.

Monochlorophenol의 목질분해균에 의한 분해 특성 (Biodegradation Characteristics of Monochlorophenols by Wood Rot Fungi)

  • 최인규;이재원;최돈하
    • 한국환경농학회지
    • /
    • 제21권4호
    • /
    • pp.261-268
    • /
    • 2002
  • Monochlorophenol인 2-, 3- 및 4-chlorophenol에 대해서 D. concentrica, T. versicolor, P. ostreatus 3균주를 이용하여 저항성, 분해능, 분해산물 등을 비교 분석하였다. T. versicolor는 monochlorophenol의 종류 및 농도의 증가에 따라 전혀 영향을 받지 않고 균사 생장이 이뤄지며, D. concentrica는 3-, 4-chlorophenol에서 100 mg/L 이상으로 농도가 증가하면 균사 생장이 느려져 제한을 받고 있는 것으로 나타났다. P. ostreatus는 두 균주와 달리 대조구 자체의 생장이 14일 정도로 상당히 느렸으나 2-, 3-chlorophenol을 첨가했을 때 오히려 1$\sim$2일 정도씩 생장이 촉진되는 결과를 나타냈다. 2-Chloro- phenol 이나 3-chlorophenol에서는 P. ostreatus가 제일 우수한 분해능을 보였으며 4-chlorophenol의 경우는 T. versicolor가 2균주에 비하여 월등하게 우수하게 나타나 균주에 따른 mono- chlorophenol의 분해능에 있어서 차이가 있고, 염소의 치환 위치에 따라 ortho나 meta 보다는 para 위치에 염소가 치환된 4-chlorophenol이 D. concentrica나 P. ostreatus의 경우 분해가 느린 것으로 나타났다. 그러나 T. versicolor는 2-, 3- 및 4-chlorophenol의 저항성 시험에서 균사 생장이 제한을 받지 않고 우수한 생장력을 갖고 있는 것처럼 분해능 시험에 있어서도 우수하였다. 균주별로 pH와 균사량은 P. ostreatus > T. versicolor > D. concentrica 순으로 높았으며, 균주내에서 배양일수별로 pH의 변이는 유동적이었고 균사량은 조금씩 증가하였으나 뚜렷한 차이는 없었다. 즉, 2-, 3- 또는 4-chlorophenol의 목질분해균을 이용한 분해에 있어서 pH 및 균사량은 monochlorophenol의 분해능과는 상관관계가 낮은 것으로 나타났다. T. versicolor와 P. ostreatus의 경우는 높은 laccase의 유도 효과를 나타내면서 monochlorophenol의 분해에 영향을 주는 것으로 생각된다. Monochlorophenol의 분해산물로는 1,3,5-trihydroxyl benzene, 1-ethyl-1-hydroxyl poltane, 2-pro-penoicacid, methylmalonic acid, 2-methyl-4-keto-pentan-2-ol 등과 지방산의 일종인 tetradecanoic acid, hexadecane, hept-adecanoic acid, octadecanoic acid 등이 확인되었다.