References
- Henschler D. Toxicity of chlorinated organic compounds: Effects of the introduction of chlorine in organic molecules. Angew. Chem. Int. Ed. Engl. 1994;33:1920-1935. https://doi.org/10.1002/anie.199419201
- Ruder AM. Potential health effects of occupational chlorinated solvent exposure. Ann. NY. Acad. Sci. 2006;1076:207-227. https://doi.org/10.1196/annals.1371.050
- Panagos P, Van Liedekerke M, Yigini Y, Montanarella L. Contaminated sites in Europe: Review of the current situation based on data collected through a European network. J. Environ. Public Health 2013;2013:158764.
- Moran MJ, Zogorski JS, Squillace PJ. Chlorinated solvents in groundwater of the United States. Environ. Sci. Technol. 2007;41:74-81. https://doi.org/10.1021/es061553y
- Crane RA, Scott TB. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J. Hazard. Mater. 2012;211-212:112-125. https://doi.org/10.1016/j.jhazmat.2011.11.073
- Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 2005;39:1338-1345. https://doi.org/10.1021/es049195r
- Mueller NC, Braun J, Bruns J, et al. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ. Sci. Pollut. Res. 2012;19:550-558. https://doi.org/10.1007/s11356-011-0576-3
- Bae S, Lee W. Influence of riboflavin on nanoscale zero-valent iron reactivity during the degradation of carbon tetrachloride. Environ. Sci. Technol. 2014;48:2368-2376. https://doi.org/10.1021/es4056565
- Bezbaruah AN, Thompson JM, Chisholm BJ. Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles. J. Environ. Sci. Health B. 2009;44:518-524. https://doi.org/10.1080/03601230902997501
- Wang Q, Jeong SW, Choi H. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: Direct observation and quantification. J. Hazard. Mater. 2012;213-214:299-310. https://doi.org/10.1016/j.jhazmat.2012.02.002
- Li S, Fang Y, Romanczuk CD, Jin Z, Li T, Wong MS. Establishing the trichloroethene dechlorination rates of palladium-based catalysts and iron-based reductants. Appl. Catal. B-Environ. 2012;125:95-102. https://doi.org/10.1016/j.apcatb.2012.05.025
- Krol MM, Oleniuk AJ, Kocur CM, et al. A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environ. Sci. Technol. 2013;47:7332-7340. https://doi.org/10.1021/es3041412
- Hwang Y, Lee Y, Mines PD, Huh YS, Andersen HR. Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination. Appl. Catal. B-Environ. 2014;147:748-755. https://doi.org/10.1016/j.apcatb.2013.10.017
- Mines PD, Byun J, Hwang Y, Patel HA, Andersen HR, Yavuz CT. Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal. J. Mater. Chem. A. 2016;4:632-639. https://doi.org/10.1039/C5TA05025A
- Saberinasr A, Rezaei M, Nakhaei M, Hosseini SM. Transport of CMC-stabilized nZVI in saturated sand column: The effect of particle concentration and soil grain size. Water Air Soil Pollut. 2016;227:394. https://doi.org/10.1007/s11270-016-3097-3
- Choi H, Al-Abed S, Agarwal S, Dionysiou DD. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chem. Mater. 2008;20:3649-3655. https://doi.org/10.1021/cm8003613
- Kim H, Hong HJ, Jung J, Kim SH, Yang JW. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J. Hazard. Mater. 2010;176:1038-1043. https://doi.org/10.1016/j.jhazmat.2009.11.145
- Liu C, Li X, Ma B, Qin A, He C. Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane. Appl. Surf. Sci. 2014;321:158-165. https://doi.org/10.1016/j.apsusc.2014.09.202
- Mines PD, Uthuppu B, Thirion D, et al. Granular activated carbon with grafted nanoporous polymer enhances nanoscale zero-valent iron impregnation and water contaminant removal. Chem. Eng. J. 2018;339:22-31. https://doi.org/10.1016/j.cej.2018.01.102
- Hwang Y, Lee Y, Mines PD, Oh Y, Choi JS, Andersen HR. Investigation of washing and storage strategy on aging of Mg-aminoclay (MgAC) coated nanoscale zero-valent iron (nZVI) particles. Chem. Eng. Sci. 2014;119:310-317. https://doi.org/10.1016/j.ces.2014.08.002
-
Zhang Y, Chen W, Dai C, Zhou C, Zhou X. Structural evolution of nanoscale zero-valent iron (nZVI) in anoxic
$Co^{2+}$ solution:Interactional performance and mechanism. Sci. Rep. 2015;5:13966. https://doi.org/10.1038/srep13966 - Hwang Y, Mines PD, Jakobsen MH, Andersen HR. Simple colorimetric assay for dehalogenation reactivity of nanoscale zero-valent iron using 4-chlorophenol. Appl. Catal. B-Environ. 2015;166-167:18-24. https://doi.org/10.1016/j.apcatb.2014.10.059
- Harfmann RG, Crouch SR. Kinetic study of Berthelot reaction steps in the absence and presence of coupling reagents. Talanta 1989;36:261-269. https://doi.org/10.1016/0039-9140(89)80105-5
- Hwang Y, Salatas A, Mines PD, Jakobsen MH, Andersen HR. Graduated characterization method using a multi-well microplate for reducing reactivity of nanoscale zero valent iron materials. Appl. Catal. B-Environ. 2016;181:314-320. https://doi.org/10.1016/j.apcatb.2015.07.041
- Mines PD, Kaarsholm KMS, Droumpali A, Andersen HR, Lee W, Hwang Y. Termination of nanoscale zero-valent iron reactivity by addition of bromate as a reducing reactivity competitor. J. Nanopart. Res. 2017;19:301. https://doi.org/10.1007/s11051-017-4000-x
- McKnight US, Funder SG, Rasmussen JJ, Finkel M, Binning PJ, Bjerg PL. An integrated model for assessing the risk of TCE groundwater contamination to human receptors and surface water ecosystems. Ecol. Eng. 2010;36:1126-1137. https://doi.org/10.1016/j.ecoleng.2010.01.004
- Squillace PJ, Thurman EM, Furlong ET. Groundwater as a nonpoint source of atrazine and deethylatrazine in a river during base flow conditions. Water Resour. Res. 1993;29:1719-1729. https://doi.org/10.1029/93WR00290
- Wang Q, Snyder S, Kim J, Choi H. Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction: Synthesis, characterization, and reactivity. Environ. Sci. Technol. 2009;43:3292-3299. https://doi.org/10.1021/es803540b
- Hansen KMS, Willach S, Antoniou MG, Mosbæk H, Albrechtsen H, Andersen HR. Effect of pH on the formation of disinfection byproducts in swimming pool water - Is less THM better? Water Res. 2012;46:6399-6409. https://doi.org/10.1016/j.watres.2012.09.008
- Wang W, Jin Z, Li T, Zhang H, Gao S. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal. Chemosphere 2006;65:1396-1404. https://doi.org/10.1016/j.chemosphere.2006.03.075
- Nadagouda MN, Castle AB, Murdock RC, Hussain SM, Varma RS. In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem. 2010;12:114-122. https://doi.org/10.1039/B921203P
- Ryu A, Jeong S, Jang A, Choi H. Reduction of highly concentrated nitrate using nanoscale zero-valent iron: Effects of aggregation and catalyst on reactivity. Appl. Catal. B-Environ. 2011;105:128-135. https://doi.org/10.1016/j.apcatb.2011.04.002
- Tomishige K, Li D, Tamura M, Nakagawa Y. Nickel-iron alloy catalysts for reforming of hydrocarbons: Preparation, structure, and catalytic properties. Catal. Sci. Technol. 2017;7:3952-3979. https://doi.org/10.1039/C7CY01300K
- Ko SO, Lee DH, Kim YH. Kinetic studies of reductive dechlorination of chlorophenols with Ni/Fe bimetallic particles. Environ. Technol. 2007;28:583-593. https://doi.org/10.1080/09593332808618818
- Barnes RJ, Riba O, Gardner MN, Scott TB, Jackman SA, Thompson IP. Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere 2010;79:448-454. https://doi.org/10.1016/j.chemosphere.2010.01.044
- Lai B, Zhang Y, Chen Z, Yang P, Zhou Y, Wang J. Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron-copper (Fe/Cu) bimetallic particles. Appl. Catal. B-Environ. 2014;144:816-830. https://doi.org/10.1016/j.apcatb.2013.08.020
- Li T, Farrell J. Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ. Sci. Technol. 2000;34:173-179. https://doi.org/10.1021/es9907358
- Arnold WA, Roberts AL. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol. 2000;34:1794-1805. https://doi.org/10.1021/es990884q
Cited by
- Enhancement of Nanoscale Zero-valent Iron Immobilization on Polyvinyl Alcohol Sponge through Surface Modification vol.41, pp.9, 2019, https://doi.org/10.4491/ksee.2019.41.9.473
- Improved Affinity of Nanoscale Zero Valent Iron toward Hydrophobic Organic Solvent using Poly(1-vinylpyrrolidone-co-vinyl acetate) vol.42, pp.9, 2020, https://doi.org/10.4491/ksee.2020.42.9.431